BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18524567)

  • 41. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
    Maki M; Leung KT; Qin W
    Int J Biol Sci; 2009 Jul; 5(5):500-16. PubMed ID: 19680472
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell.
    Rezaei F; Richard TL; Logan BE
    Biotechnol Bioeng; 2008 Dec; 101(6):1163-9. PubMed ID: 18683248
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp. R63 from tropical dry deciduous forest soil.
    Harnvoravongchai P; Singwisut R; Ounjai P; Aroonnual A; Kosiyachinda P; Janvilisri T; Chankhamhaengdecha S
    PLoS One; 2020; 15(7):e0236518. PubMed ID: 32702033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plant biomass degradation by gut microbiomes: more of the same or something new?
    Morrison M; Pope PB; Denman SE; McSweeney CS
    Curr Opin Biotechnol; 2009 Jun; 20(3):358-63. PubMed ID: 19515552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzymatic digestion of liquid hot water pretreated hybrid poplar.
    Kim Y; Mosier NS; Ladisch MR
    Biotechnol Prog; 2009; 25(2):340-8. PubMed ID: 19294734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The path forward for biofuels and biomaterials.
    Ragauskas AJ; Williams CK; Davison BH; Britovsek G; Cairney J; Eckert CA; Frederick WJ; Hallett JP; Leak DJ; Liotta CL; Mielenz JR; Murphy R; Templer R; Tschaplinski T
    Science; 2006 Jan; 311(5760):484-9. PubMed ID: 16439654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Screening for cellulases with industrial value and their use in biomass conversion.
    Jüergensen J; Ilmberger N; Streit WR
    Methods Mol Biol; 2012; 834():1-16. PubMed ID: 22144349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-temperature enzymatic breakdown of cellulose.
    Wang H; Squina F; Segato F; Mort A; Lee D; Pappan K; Prade R
    Appl Environ Microbiol; 2011 Aug; 77(15):5199-206. PubMed ID: 21685160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin.
    Alderkamp AC; van Rijssel M; Bolhuis H
    FEMS Microbiol Ecol; 2007 Jan; 59(1):108-17. PubMed ID: 17233748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymes and proteins from organisms that grow near and above 100 degrees C.
    Adams MW
    Annu Rev Microbiol; 1993; 47():627-58. PubMed ID: 8257111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering. Cellulosic biofuels--got gasoline?
    Regalbuto JR
    Science; 2009 Aug; 325(5942):822-4. PubMed ID: 19679801
    [No Abstract]   [Full Text] [Related]  

  • 53. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.
    Piao H; Froula J; Du C; Kim TW; Hawley ER; Bauer S; Wang Z; Ivanova N; Clark DS; Klenk HP; Hess M
    Biotechnol Bioeng; 2014 Aug; 111(8):1550-65. PubMed ID: 24728961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens.
    Wang M; Mu Z; Wang J; Hou S; Han L; Dong Y; Xiao L; Xia R; Fang X
    Bioresour Technol; 2013 Apr; 133():507-12. PubMed ID: 23455222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Applications of computational science for understanding enzymatic deconstruction of cellulose.
    Beckham GT; Bomble YJ; Bayer EA; Himmel ME; Crowley MF
    Curr Opin Biotechnol; 2011 Apr; 22(2):231-8. PubMed ID: 21168322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment.
    Graham JE; Clark ME; Nadler DC; Huffer S; Chokhawala HA; Rowland SE; Blanch HW; Clark DS; Robb FT
    Nat Commun; 2011 Jul; 2():375. PubMed ID: 21730956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioenergy feedstock-specific enrichment of microbial populations during high-solids thermophilic deconstruction.
    Reddy AP; Allgaier M; Singer SW; Hazen TC; Simmons BA; Hugenholtz P; VanderGheynst JS
    Biotechnol Bioeng; 2011 Sep; 108(9):2088-98. PubMed ID: 21520015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules.
    O'Reilly J; Chinalia FA; Mahony T; Collins G; Wu J; O'Flaherty V
    Lett Appl Microbiol; 2009 Oct; 49(4):421-6. PubMed ID: 19674296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A high-throughput solid phase screening method for identification of lignocellulose-degrading bacteria from environmental isolates.
    Gardner JG; Zeitler LA; Wigstrom WJ; Engel KC; Keating DH
    Biotechnol Lett; 2012 Jan; 34(1):81-9. PubMed ID: 21904949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.