These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18524567)

  • 61. Thermophilic enzymes and their biotechnological potential.
    Lasa I; Berenguer J
    Microbiologia; 1993 Dec; 9(2):77-89. PubMed ID: 8172694
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases.
    Picart P; Diaz P; Pastor FI
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):307-16. PubMed ID: 18454347
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Extremely thermophilic microorganisms. Metabolic strategies, genetic characteristics, and biotechnological potential.
    Kelly RM; Peeples TL; Halio SB; Rinker KD; Duffaud GD
    Ann N Y Acad Sci; 1994 Nov; 745():409-25. PubMed ID: 7832528
    [No Abstract]   [Full Text] [Related]  

  • 65. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels.
    Chou CJ; Jenney FE; Adams MW; Kelly RM
    Metab Eng; 2008 Nov; 10(6):394-404. PubMed ID: 18647659
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring.
    Lee LS; Goh KM; Chan CS; Annie Tan GY; Yin WF; Chong CS; Chan KG
    Microbiologyopen; 2018 Dec; 7(6):e00615. PubMed ID: 29602271
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use.
    Ljungdahl LG
    Ann N Y Acad Sci; 2008 Mar; 1125():308-21. PubMed ID: 18378601
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermophilic Degradation of Hemicellulose, a Critical Feedstock in the Production of Bioenergy and Other Value-Added Products.
    Cann I; Pereira GV; Abdel-Hamid AM; Kim H; Wefers D; Kayang BB; Kanai T; Sato T; Bernardi RC; Atomi H; Mackie RI
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31980431
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.
    Blumer-Schuette SE; Alahuhta M; Conway JM; Lee LL; Zurawski JV; Giannone RJ; Hettich RL; Lunin VV; Himmel ME; Kelly RM
    J Biol Chem; 2015 Apr; 290(17):10645-56. PubMed ID: 25720489
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest.
    Service RF
    Science; 2007 Mar; 315(5818):1488-91. PubMed ID: 17363642
    [No Abstract]   [Full Text] [Related]  

  • 71. Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation.
    Tang YQ; Matsui T; Morimura S; Wu XL; Kida K
    J Biosci Bioeng; 2008 Aug; 106(2):180-7. PubMed ID: 18804062
    [TBL] [Abstract][Full Text] [Related]  

  • 72. To be or not to be a compatible solute: bioversatility of mannosylglycerate and glucosylglycerate.
    Empadinhas N; da Costa MS
    Syst Appl Microbiol; 2008 Aug; 31(3):159-68. PubMed ID: 18599240
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Greater transportation energy and GHG offsets from bioelectricity than ethanol.
    Campbell JE; Lobell DB; Field CB
    Science; 2009 May; 324(5930):1055-7. PubMed ID: 19423776
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?
    Chandra RP; Bura R; Mabee WE; Berlin A; Pan X; Saddler JN
    Adv Biochem Eng Biotechnol; 2007; 108():67-93. PubMed ID: 17530205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The potential of cellulases and cellulosomes for cellulosic waste management.
    Bayer EA; Lamed R; Himmel ME
    Curr Opin Biotechnol; 2007 Jun; 18(3):237-45. PubMed ID: 17462879
    [TBL] [Abstract][Full Text] [Related]  

  • 76. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes.
    Rizk M; Antranikian G; Elleuche S
    Biochem Biophys Res Commun; 2012 Nov; 428(1):1-5. PubMed ID: 23058915
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genomics of aerobic cellulose utilization systems in actinobacteria.
    Anderson I; Abt B; Lykidis A; Klenk HP; Kyrpides N; Ivanova N
    PLoS One; 2012; 7(6):e39331. PubMed ID: 22723998
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Extremely thermophilic energy metabolisms: biotechnological prospects.
    Straub CT; Zeldes BM; Schut GJ; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2017 Jun; 45():104-112. PubMed ID: 28319854
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Progress in microbial biomass conversion into green energy.
    Wang Y; Van Le Q; Yang H; Lam SS; Yang Y; Gu H; Sonne C; Peng W
    Chemosphere; 2021 Oct; 281():130835. PubMed ID: 33992848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.