BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18524913)

  • 21. Vfr Directly Activates exsA Transcription To Regulate Expression of the Pseudomonas aeruginosa Type III Secretion System.
    Marsden AE; Intile PJ; Schulmeyer KH; Simmons-Patterson ER; Urbanowski ML; Wolfgang MC; Yahr TL
    J Bacteriol; 2016 May; 198(9):1442-50. PubMed ID: 26929300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner.
    Arora SK; Ritchings BW; Almira EC; Lory S; Ramphal R
    J Bacteriol; 1997 Sep; 179(17):5574-81. PubMed ID: 9287015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription.
    Ramsey DM; Baynham PJ; Wozniak DJ
    J Bacteriol; 2005 Jul; 187(13):4430-43. PubMed ID: 15968052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
    Gao C; Hu C; Zheng Z; Ma C; Jiang T; Dou P; Zhang W; Che B; Wang Y; Lv M; Xu P
    J Bacteriol; 2012 May; 194(10):2687-92. PubMed ID: 22408166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene.
    Wozniak DJ; Ohman DE
    J Bacteriol; 1993 Jul; 175(13):4145-53. PubMed ID: 8320229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases.
    Wood LF; Leech AJ; Ohman DE
    Mol Microbiol; 2006 Oct; 62(2):412-26. PubMed ID: 17020580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DesT coordinates the expression of anaerobic and aerobic pathways for unsaturated fatty acid biosynthesis in Pseudomonas aeruginosa.
    Subramanian C; Rock CO; Zhang YM
    J Bacteriol; 2010 Jan; 192(1):280-5. PubMed ID: 19880602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Pseudomonas aeruginosa exotoxin A regulatory gene, ptxS: evidence for negative autoregulation.
    Swanson BL; Colmer JA; Hamood AN
    J Bacteriol; 1999 Aug; 181(16):4890-5. PubMed ID: 10438759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PsrA Regulator Connects Cell Physiology and Class 1 Integron Integrase Gene Expression Through the Regulation of lexA Gene Expression in Pseudomonas spp.
    Novovic KD; Malesevic MJ; Filipic BV; Mirkovic NL; Miljkovic MS; Kojic MO; Jovčić BU
    Curr Microbiol; 2019 Mar; 76(3):320-328. PubMed ID: 30684026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids.
    Pan X; Fan Z; Chen L; Liu C; Bai F; Wei Y; Tian Z; Dong Y; Shi J; Chen H; Jin Y; Cheng Z; Jin S; Lin J; Wu W
    Nucleic Acids Res; 2020 Jun; 48(11):5967-5985. PubMed ID: 32406921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the Pseudomonas aeruginosa metalloendopeptidase, Mep72, a member of the Vfr regulon.
    Balyimez A; Colmer-Hamood JA; San Francisco M; Hamood AN
    BMC Microbiol; 2013 Nov; 13():269. PubMed ID: 24279383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa.
    Dean CR; Neshat S; Poole K
    J Bacteriol; 1996 Sep; 178(18):5361-9. PubMed ID: 8808923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.
    Madhuri Indurthi S; Chou HT; Lu CD
    Microbiology (Reading); 2016 May; 162(5):876-888. PubMed ID: 26967762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription.
    Delic-Attree I; Toussaint B; Garin J; Vignais PM
    Mol Microbiol; 1997 Jun; 24(6):1275-84. PubMed ID: 9218775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A novel transcriptional regulator of the phzA1 operon in Pseudomonas aeruginosa].
    Liping K; Haihua L; Zhaolin D; Kangmin D; Lixin S
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1154-9. PubMed ID: 19062637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobically controlled expression system derived from the arcDABC operon of Pseudomonas aeruginosa: application to lipase production.
    Winteler HV; Schneidinger B; Jaeger KE; Haas D
    Appl Environ Microbiol; 1996 Sep; 62(9):3391-8. PubMed ID: 8795231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of the agtABCD and agtSR operons for 4-aminobutyrate and 5-aminovalerate uptake and regulation in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Lu CD
    Curr Microbiol; 2014 Jan; 68(1):59-63. PubMed ID: 23982201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The
    Ding F; Oinuma KI; Smalley NE; Schaefer AL; Hamwy O; Greenberg EP; Dandekar AA
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154259
    [No Abstract]   [Full Text] [Related]  

  • 39. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan.
    Korgaonkar AK; Whiteley M
    J Bacteriol; 2011 Feb; 193(4):909-17. PubMed ID: 21169497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
    Li G; Lu CD
    Microbiology (Reading); 2018 Feb; 164(2):205-216. PubMed ID: 29293081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.