BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1852526)

  • 1. The effect of cardiac cycle length on ventricular end-diastolic pressure and maximum time derivative of pressure in the stage 24 chick embryo.
    Zimmerman FJ; Hughes SF; Cuneo B; Benson DW
    Pediatr Res; 1991 Apr; 29(4 Pt 1):338-41. PubMed ID: 1852526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between cardiac cycle length and ventricular relaxation rate in the chick embryo.
    Cheanvechai V; Hughes SF; Benson DW
    Pediatr Res; 1992 May; 31(5):480-2. PubMed ID: 1603624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of acute alterations in cycle length on ventricular function in chick embryos.
    Casillas CB; Tinney JP; Keller BB
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H905-11. PubMed ID: 8092294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systolic and diastolic ventricular function in the normal and extra-embryonic venous clipped chicken embryo of stage 24: a pressure-volume loop assessment.
    Stekelenburg-de Vos S; Steendijk P; Ursem NT; Wladimiroff JW; Poelmann RE
    Ultrasound Obstet Gynecol; 2007 Sep; 30(3):325-31. PubMed ID: 17721868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart rate-dependent characteristics of diastolic ventricular filling in the developing chick embryo.
    Phelan CM; Hughes SF; Benson DW
    Pediatr Res; 1995 Mar; 37(3):289-93. PubMed ID: 7784137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diastolic filling characteristics in the stage 12 to 27 chick embryo ventricle.
    Hu N; Connuck DM; Keller BB; Clark EB
    Pediatr Res; 1991 Apr; 29(4 Pt 1):334-7. PubMed ID: 1852525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos.
    Ishiwata T; Nakazawa M; Pu WT; Tevosian SG; Izumo S
    Circ Res; 2003 Oct; 93(9):857-65. PubMed ID: 14551244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventricular relaxation in the stage 24 chick embryo following changes in volume and blockade of Na+ and Ca2+ channels.
    Naheed ZJ; Lahoti A; Hughes SF; Benson DW
    Cardiovasc Res; 1996 Feb; 31 Spec No():E139-44. PubMed ID: 8681338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem cells improve right ventricular functional recovery after acute pressure overload and ischemia reperfusion injury.
    Wairiuko GM; Crisostomo PR; Wang M; Morrell ED; Meldrum KK; Lillemoe KD; Meldrum DR
    J Surg Res; 2007 Aug; 141(2):241-6. PubMed ID: 17583739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of hypoxia on early chick embryo growth and cardiovascular function.
    Sharma SK; Lucitti JL; Nordman C; Tinney JP; Tobita K; Keller BB
    Pediatr Res; 2006 Jan; 59(1):116-20. PubMed ID: 16327005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes and relations between heart function and organ blood flow in rats at early stage of severe burn].
    Yin ZG; Huang YS; Li BX
    Zhonghua Shao Shang Za Zhi; 2010 Feb; 26(1):10-3. PubMed ID: 20510027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of afterload on left ventricular performance in experimental animals. Comparison of the pre-ejection period and other indices of left ventricular contractility.
    Boudoulas H; Karayannacos PE; Lewis RP; Leier CV; Vasko JS
    J Med; 1982; 13(5-6):373-85. PubMed ID: 6963329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of transient and sustained increase of blood pressure on the 1st temporal derivative of the ventricular pressure].
    Bregagnollo EA; Matsubara BB; Padovani C; Tucci PJ
    Arq Bras Cardiol; 1992 Jun; 58(6):437-43. PubMed ID: 1340722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in rabbit cardiac function during fulminant endotoxin shock.
    Velkov Z
    Acta Physiol Pharmacol Bulg; 1994; 20(1):19-24. PubMed ID: 7892767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of right ventricular pressure increase rate to evaluate cardiac contractility in horses.
    Nollet H; Van Loon G; Deprez P; Sustronck B; Muylle E
    Am J Vet Res; 1999 Dec; 60(12):1508-12. PubMed ID: 10622159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental hemodynamic changes in rat embryos at 11 to 15 days of gestation: normal data of blood pressure and the effect of caffeine compared to data from chick embryo.
    Nakazawa M; Miyagawa S; Ohno T; Miura S; Takao A
    Pediatr Res; 1988 Feb; 23(2):200-5. PubMed ID: 3353164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo.
    Keller BB; Yoshigi M; Tinney JP
    Am J Physiol; 1997 Dec; 273(6):H2861-6. PubMed ID: 9435625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preload maintenance and the left ventricular response to prolonged exercise in men.
    Dawson EA; Shave R; Whyte G; Ball D; Selmer C; Jans Ø; Secher NH; George KP
    Exp Physiol; 2007 Mar; 92(2):383-90. PubMed ID: 17158180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic right ventricular dimension. Relation to chamber volume during the cardiac cycle.
    Morris JJ; Pellom GL; Hamm DP; Everson CT; Wechsler AS
    J Thorac Cardiovasc Surg; 1986 Jun; 91(6):879-87. PubMed ID: 3713239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate automatic detection of end-diastole from left ventricular pressure using peak curvature.
    Mynard JP; Penny DJ; Smolich JJ
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2651-7. PubMed ID: 18990636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.