These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1852796)

  • 1. The effect of walking with an assistive device and using a wheelchair on school performance in students with myelomeningocele.
    Franks CA; Palisano RJ; Darbee JC
    Phys Ther; 1991 Aug; 71(8):570-7; discussion 577-9. PubMed ID: 1852796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Efficiency in Children With Myelomeningocele During Acute Use of Assistive Devices: A Pilot Study.
    Sansom JK; Ulrich BD
    Adapt Phys Activ Q; 2018 Jan; 35(1):57-75. PubMed ID: 29313712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Study of Assisted Ambulation and Perceived Exertion With the Wheeled Knee Walker and Axillary Crutches in Healthy Subjects.
    Kocher BK; Chalupa RL; Lopez DM; Kirk KL
    Foot Ankle Int; 2016 Nov; 37(11):1232-1237. PubMed ID: 27521354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults.
    Protas EJ; Raines ML; Tissier S
    Arch Phys Med Rehabil; 2007 Jun; 88(6):768-73. PubMed ID: 17532900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy efficiency of ambulation-A comparison of various orthopaedic possibilities.
    Mathew J; Raja K; Baby FP; Barikkal B
    J Bodyw Mov Ther; 2018 Jul; 22(3):622-626. PubMed ID: 30100287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility Assistive Device Use in Older Adults.
    Sehgal M; Jacobs J; Biggs WS
    Am Fam Physician; 2021 Jun; 103(12):737-744. PubMed ID: 34128609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating energy expenditure for different assistive devices in the school setting.
    Lephart K; Utsey C; Wild DL; Fisher SR
    Pediatr Phys Ther; 2014; 26(3):354-9. PubMed ID: 24819680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of assistive devices on the oxygen cost, cardiovascular stress, and perception of nonweight-bearing ambulation.
    Holder CG; Haskvitz EM; Weltman A
    J Orthop Sports Phys Ther; 1993 Oct; 18(4):537-42. PubMed ID: 8220412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels of mobility in children and adolescents with spina bifida-clinical parameters predicting mobility and maintenance of these skills.
    Pauly M; Cremer R
    Eur J Pediatr Surg; 2013 Apr; 23(2):110-4. PubMed ID: 23093438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary evaluation of the PEDI-CAT Mobility item bank for children using walking aids and wheelchairs.
    Dumas HM; Fragala-Pinkham MA; Feng T; Haley SM
    J Pediatr Rehabil Med; 2012; 5(1):29-35. PubMed ID: 22543890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulation of children with myelomeningocele: parapodium versus parapodium with Orlau swivel modification.
    Lough LK; Nielsen DH
    Dev Med Child Neurol; 1986 Aug; 28(4):489-97. PubMed ID: 3758502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory assistive devices and walking performance in patients with incomplete spinal cord injury.
    Saensook W; Phonthee S; Srisim K; Mato L; Wattanapan P; Amatachaya S
    Spinal Cord; 2014 Mar; 52(3):216-9. PubMed ID: 24126853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychosocial impact of mobility assistive technology on people with neurological conditions.
    Jiménez Arberas E; Ordoñez Fernández FF; Rodríguez Menéndez S
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):465-471. PubMed ID: 31553255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dual-task methodology and assessing the attentional demands of ambulation with walking devices.
    Wright DL; Kemp TL
    Phys Ther; 1992 Apr; 72(4):306-12; discussion 313-5. PubMed ID: 1584862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility aids for children with high-level myelomeningocele: parapodium versus wheelchair.
    Liptak GS; Shurtleff DB; Bloss JW; Baltus-Hebert E; Manitta P
    Dev Med Child Neurol; 1992 Sep; 34(9):787-96. PubMed ID: 1526349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of assistive devices on cardiorespiratory demands in older adults.
    Foley MP; Prax B; Crowell R; Boone T
    Phys Ther; 1996 Dec; 76(12):1313-9. PubMed ID: 8960000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of walking devices on kinematics in patients with spastic bilateral cerebral palsy.
    Krautwurst BK; Dreher T; Wolf SI
    Gait Posture; 2016 May; 46():184-7. PubMed ID: 27131199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical activity capacity in children with myelomeningocele.
    Agre JC; Findley TW; McNally MC; Habeck R; Leon AS; Stradel L; Birkebak R; Schmalz R
    Arch Phys Med Rehabil; 1987 Jun; 68(6):372-7. PubMed ID: 3592952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.