These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 18528418)
1. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. Fike DA; Gammon CL; Ziebis W; Orphan VJ ISME J; 2008 Jul; 2(7):749-59. PubMed ID: 18528418 [TBL] [Abstract][Full Text] [Related]
2. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. Decker KL; Potter CS; Bebout BM; Marais DJ; Carpenter S; Discipulo M; Hoehler TM; Miller SR; Thamdrup B; Turk KA; Visscher PT FEMS Microbiol Ecol; 2005 May; 52(3):377-95. PubMed ID: 16329922 [TBL] [Abstract][Full Text] [Related]
3. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Wieland A; Pape T; Möbius J; Klock JH; Michaelis W Geobiology; 2008 Mar; 6(2):171-86. PubMed ID: 18380879 [TBL] [Abstract][Full Text] [Related]
4. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
5. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats. Houghton J; Fike D; Druschel G; Orphan V; Hoehler TM; Des Marais DJ Geobiology; 2014 Nov; 12(6):557-74. PubMed ID: 25312537 [TBL] [Abstract][Full Text] [Related]
6. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats. Gomes ML; Klatt JM; Dick GJ; Grim SL; Rico KI; Medina M; Ziebis W; Kinsman-Costello L; Sheldon ND; Fike DA Geobiology; 2022 Jan; 20(1):60-78. PubMed ID: 34331395 [TBL] [Abstract][Full Text] [Related]
7. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
8. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Smith JM; Green SJ; Kelley CA; Prufert-Bebout L; Bebout BM Environ Microbiol; 2008 Feb; 10(2):386-94. PubMed ID: 18177370 [TBL] [Abstract][Full Text] [Related]
9. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Philippot P; Van Zuilen M; Lepot K; Thomazo C; Farquhar J; Van Kranendonk MJ Science; 2007 Sep; 317(5844):1534-7. PubMed ID: 17872441 [TBL] [Abstract][Full Text] [Related]
10. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Orphan VJ; Jahnke LL; Embaye T; Turk KA; Pernthaler A; Summons RE; DES Marais DJ Geobiology; 2008 Aug; 6(4):376-93. PubMed ID: 18564187 [TBL] [Abstract][Full Text] [Related]
11. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. Bühring SI; Smittenberg RH; Sachse D; Lipp JS; Golubic S; Sachs JP; Hinrichs KU; Summons RE Geobiology; 2009 Jun; 7(3):308-23. PubMed ID: 19476506 [TBL] [Abstract][Full Text] [Related]
12. Comparison of diazotroph community structure in Lyngbya sp. and Microcoleus chthonoplastes dominated microbial mats from Guerrero Negro, Baja, Mexico. Omoregie EO; Crumbliss LL; Bebout BM; Zehr JP FEMS Microbiol Ecol; 2004 Mar; 47(3):305-8. PubMed ID: 19712319 [TBL] [Abstract][Full Text] [Related]
13. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
14. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
15. Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia). Lojen S; Ogrinc N; Dolenec T; Vokal B; Szaran J; Mihelcić G; Branica M Sci Total Environ; 2004 Jul; 327(1-3):265-84. PubMed ID: 15172586 [TBL] [Abstract][Full Text] [Related]
16. Carbon isotopic composition of lipid biomarkers from an endoevaporitic gypsum crust microbial mat reveals cycling of mineralized organic carbon. Jahnke LL; Des Marais DJ Geobiology; 2019 Nov; 17(6):643-659. PubMed ID: 31361088 [TBL] [Abstract][Full Text] [Related]
17. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment. Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121 [TBL] [Abstract][Full Text] [Related]
18. Large sulfur isotope fractionation does not require disproportionation. Sim MS; Bosak T; Ono S Science; 2011 Jul; 333(6038):74-7. PubMed ID: 21719675 [TBL] [Abstract][Full Text] [Related]
19. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic "Epsilonproteobacteria". Engel AS; Porter ML; Stern LA; Quinlan S; Bennett PC FEMS Microbiol Ecol; 2004 Dec; 51(1):31-53. PubMed ID: 16329854 [TBL] [Abstract][Full Text] [Related]