These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 18528571)
1. Gold nanoparticles coated with a pyruvated trisaccharide epitope of the extracellular proteoglycan of Microciona prolifera as potential tools to explore carbohydrate-mediated cell recognition. Carvalho de Souza A; Vliegenthart JF; Kamerling JP Org Biomol Chem; 2008 Jun; 6(12):2095-102. PubMed ID: 18528571 [TBL] [Abstract][Full Text] [Related]
2. Adhesion forces in the self-recognition of oligosaccharide epitopes of the proteoglycan aggregation factor of the marine sponge Microciona prolifera. Carvalho de Souza A; Ganchev DN; Snel MM; van der Eerden JP; Vliegenthart JF; Kamerling JP Glycoconj J; 2009 May; 26(4):457-65. PubMed ID: 18843533 [TBL] [Abstract][Full Text] [Related]
3. Assessing carbohydrate-carbohydrate interactions by NMR spectroscopy: the trisaccharide epitope from the marine sponge Microciona prolifera. Santos JI; Carvalho de Souza A; Cañada FJ; Martín-Santamaría S; Kamerling JP; Jiménez-Barbero J Chembiochem; 2009 Feb; 10(3):511-9. PubMed ID: 19123195 [TBL] [Abstract][Full Text] [Related]
4. Molecular self-recognition and adhesion via proteoglycan to proteoglycan interactions as a pathway to multicellularity: atomic force microscopy and color coded bead measurements in sponges. Misevic GN Microsc Res Tech; 1999 Feb; 44(4):304-9. PubMed ID: 10098930 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. de la Fuente JM; Eaton P; Barrientos AG; Menéndez M; Penadés S J Am Chem Soc; 2005 May; 127(17):6192-7. PubMed ID: 15853323 [TBL] [Abstract][Full Text] [Related]
6. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Reynolds AJ; Haines AH; Russell DA Langmuir; 2006 Jan; 22(3):1156-63. PubMed ID: 16430279 [TBL] [Abstract][Full Text] [Related]
7. Analysis of carbohydrate-carbohydrate interactions using gold glyconanoparticles and oligosaccharide self-assembling monolayers. Carvalho de Souza A; Kamerling JP Methods Enzymol; 2006; 417():221-43. PubMed ID: 17132508 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. Jarchow J; Fritz J; Anselmetti D; Calabro A; Hascall VC; Gerosa D; Burger MM; Fernàndez-Busquets X J Struct Biol; 2000 Nov; 132(2):95-105. PubMed ID: 11162731 [TBL] [Abstract][Full Text] [Related]
9. Gold glyconanoparticles as probes to explore the carbohydrate-mediated self-recognition of marine sponge cells. Carvalho de Souza A; Halkes KM; Meeldijk JD; Verkleij AJ; Vliegenthart JF; Kamerling JP Chembiochem; 2005 May; 6(5):828-31. PubMed ID: 15770624 [No Abstract] [Full Text] [Related]
10. Involvement of a highly polyvalent glycan in the cell-binding of the aggregation factor from the marine sponge Microciona prolifera. Misevic GN; Burger MM J Cell Biochem; 1990 Aug; 43(4):307-14. PubMed ID: 2118911 [TBL] [Abstract][Full Text] [Related]
11. Molecular recognition between glyconectins as an adhesion self-assembly pathway to multicellularity. Misevic GN; Guerardel Y; Sumanovski LT; Slomianny MC; Demarty M; Ripoll C; Karamanos Y; Maes E; Popescu O; Strecker G J Biol Chem; 2004 Apr; 279(15):15579-90. PubMed ID: 14701844 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and biological activities of glycosphingolipid analogues from marine sponge Aplysinella rhax. Hada N; Nakashima T; Shrestha SP; Masui R; Narukawa Y; Tani K; Takeda T Bioorg Med Chem Lett; 2007 Nov; 17(21):5912-5. PubMed ID: 17827010 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera. Spillmann D; Thomas-Oates JE; van Kuik JA; Vliegenthart JF; Misevic G; Burger MM; Finne J J Biol Chem; 1995 Mar; 270(10):5089-97. PubMed ID: 7890617 [TBL] [Abstract][Full Text] [Related]
14. Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Nagahori N; Nishimura S Chemistry; 2006 Aug; 12(25):6478-85. PubMed ID: 16773661 [TBL] [Abstract][Full Text] [Related]
15. Cell adhesion and histocompatibility in sponges. Fernàndez-Busquets X; Burger MM Microsc Res Tech; 1999 Feb; 44(4):204-18. PubMed ID: 10098923 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Shukla R; Bansal V; Chaudhary M; Basu A; Bhonde RR; Sastry M Langmuir; 2005 Nov; 21(23):10644-54. PubMed ID: 16262332 [TBL] [Abstract][Full Text] [Related]
17. Molecular fingerprinting of carbohydrate structure phenotypes of three porifera proteoglycan-like glyconectins. Guerardel Y; Czeszak X; Sumanovski LT; Karamanos Y; Popescu O; Strecker G; Misevic GN J Biol Chem; 2004 Apr; 279(15):15591-603. PubMed ID: 14701843 [TBL] [Abstract][Full Text] [Related]
18. Cation-assisted laser desorption/ionization for matrix-free surface mass spectrometry of alkanethiolate self-assembled monolayers on gold substrates and nanoparticles. Ha TK; Lee TG; Song NW; Moon DW; Han SY Anal Chem; 2008 Nov; 80(22):8526-31. PubMed ID: 18847282 [TBL] [Abstract][Full Text] [Related]
19. Modulating glycosidase degradation and lectin recognition of gold glyconanoparticles. Barrientos AG; de la Fuente JM; Jiménez M; Solís D; Cañada FJ; Martín-Lomas M; Penadés S Carbohydr Res; 2009 Aug; 344(12):1474-8. PubMed ID: 19501815 [TBL] [Abstract][Full Text] [Related]