These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18529083)

  • 1. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diameter-dependent dopant location in silicon and germanium nanowires.
    Xie P; Hu Y; Fang Y; Huang J; Lieber CM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15254-8. PubMed ID: 19706402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and segregation energies of B and P doped and BP codoped silicon nanowires.
    Peelaers H; Partoens B; Peeters FM
    Nano Lett; 2006 Dec; 6(12):2781-4. PubMed ID: 17163705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric doping in silicon nanostructures: the impact of surface dangling bonds.
    Hong KH; Kim J; Lee JH; Shin J; Chung UI
    Nano Lett; 2010 May; 10(5):1671-6. PubMed ID: 20377269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of HCl on the doping and shape control of silicon nanowires.
    Gentile P; Solanki A; Pauc N; Oehler F; Salem B; Rosaz G; Baron T; Den Hertog M; Calvo V
    Nanotechnology; 2012 Jun; 23(21):215702. PubMed ID: 22551776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of atomic structure and elastic properties of branched silicon nanowires.
    Sorokin PB; Kvashnin AG; Kvashnin DG; Filicheva JA; Avramov PV; Fedorov AS; Chernozatonskii LA
    ACS Nano; 2010 May; 4(5):2784-90. PubMed ID: 20411911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry dependent I-V characteristics of silicon nanowires.
    Ng MF; Shen L; Zhou L; Yang SW; Tan VB
    Nano Lett; 2008 Nov; 8(11):3662-7. PubMed ID: 18850756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of impurity doping and stress in Si/Ge and Ge/Si core-shell nanowires.
    Fukata N; Mitome M; Sekiguchi T; Bando Y; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2012 Oct; 6(10):8887-95. PubMed ID: 22947081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral buckling mechanics in silicon nanowires on elastomeric substrates.
    Ryu SY; Xiao J; Park WI; Son KS; Huang YY; Paik U; Rogers JA
    Nano Lett; 2009 Sep; 9(9):3214-9. PubMed ID: 19670847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of silicon nanowire approaching the bulk limit.
    Ng MF; Sullivan MB; Tong SW; Wu P
    Nano Lett; 2011 Nov; 11(11):4794-9. PubMed ID: 21942398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-selected doping in silicon nanowires by an external electric field.
    Wu F; Kan E; Wu X
    Nanoscale; 2011 Sep; 3(9):3620-2. PubMed ID: 21842087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular binding and internalization of functionalized silicon nanowires.
    Zhang W; Tong L; Yang C
    Nano Lett; 2012 Feb; 12(2):1002-6. PubMed ID: 22268425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-offset driven efficiency of the doping of SiGe core-shell nanowires.
    Amato M; Ossicini S; Rurali R
    Nano Lett; 2011 Feb; 11(2):594-8. PubMed ID: 21188962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires.
    Amato M; Ossicini S; Canadell E; Rurali R
    Nano Lett; 2019 Feb; 19(2):866-876. PubMed ID: 30608707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping limits of grown in situ doped silicon nanowires using phosphine.
    Schmid H; Björk MT; Knoch J; Karg S; Riel H; Riess W
    Nano Lett; 2009 Jan; 9(1):173-7. PubMed ID: 19099512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-effect modulation of thermoelectric properties in multigated silicon nanowires.
    Curtin BM; Codecido EA; Krämer S; Bowers JE
    Nano Lett; 2013; 13(11):5503-8. PubMed ID: 24138582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.