BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 18529191)

  • 1. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling source-filter interaction in belting and high-pitched operatic male singing.
    Titze IR; Worley AS
    J Acoust Soc Am; 2009 Sep; 126(3):1530. PubMed ID: 19739766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Source-Filter Interaction Regions Based on Electroglottography.
    Palaparthi A; Maxfield L; Titze IR
    J Voice; 2019 May; 33(3):269-276. PubMed ID: 29277351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study.
    Zañartu M; Mehta DD; Ho JC; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2011 Jan; 129(1):326-39. PubMed ID: 21303014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glottal source-vocal tract interaction.
    Koizumi T; Taniguchi S; Hiromitsu S
    J Acoust Soc Am; 1985 Nov; 78(5):1541-7. PubMed ID: 4067067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller.
    Švec JG; Schutte HK; Chen CJ; Titze IR
    J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.