These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 18532832)
1. Melting mechanism of monolayers adsorbed in cylindrical pores: the influence of the pore wall roughness. Kuchta B; Firlej L; Denoyel R; Rols S; Johnson MR; Coasne B J Chem Phys; 2008 May; 128(18):184703. PubMed ID: 18532832 [TBL] [Abstract][Full Text] [Related]
2. Melting and freezing of water in cylindrical silica nanopores. Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292 [TBL] [Abstract][Full Text] [Related]
3. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B; Pellenq RJ J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of adsorption in cylindrical nanopores: the roles of fluctuations and correlations in stabilizing the adsorbed phase. Kuchta B; Firlej L; Maurin G J Chem Phys; 2005 Nov; 123(17):174711. PubMed ID: 16375561 [TBL] [Abstract][Full Text] [Related]
5. Modeling of N2 adsorption in MCM-41 materials: hexagonal pores versus cylindrical pores. Ustinov EA Langmuir; 2009 Jul; 25(13):7450-6. PubMed ID: 19358591 [TBL] [Abstract][Full Text] [Related]
6. Low temperature properties of acetonitrile confined in MCM-41. Kittaka S; Iwashita T; Serizawa A; Kranishi M; Takahara S; Kuroda Y; Mori T; Yamaguchi T J Phys Chem B; 2005 Dec; 109(49):23162-9. PubMed ID: 16375278 [TBL] [Abstract][Full Text] [Related]
7. Freezing, melting and structure of ice in a hydrophilic nanopore. Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503 [TBL] [Abstract][Full Text] [Related]
8. Solvation force, structure and thermodynamics of fluids confined in geometrically rough pores. Ghatak C; Ayappa KG J Chem Phys; 2004 May; 120(20):9703-14. PubMed ID: 15267985 [TBL] [Abstract][Full Text] [Related]
9. Fourier transform infrared and quasielectron neutron scattering studies on the binding modes of methanol molecules in the confined spaces of HMCM-41 and HZSM-5: role of pore structure and surface acid sites. Gupta NM; Kumar D; Kamble VS; Mitra S; Mukhopadhyay R; Kartha VB J Phys Chem B; 2006 Mar; 110(10):4815-23. PubMed ID: 16526719 [TBL] [Abstract][Full Text] [Related]
10. Structure of methanol confined in MCM-41 investigated by large-angle X-ray scattering technique. Takamuku T; Maruyama H; Kittaka S; Takahara S; Yamaguchi T J Phys Chem B; 2005 Jan; 109(2):892-9. PubMed ID: 16866456 [TBL] [Abstract][Full Text] [Related]
11. The structure of fluids confined in crystalline slitlike nanoscopic pores: bilayers. Sałamacha L; Patrykiejew A; Sokołowski S; Binder K J Chem Phys; 2004 Jan; 120(2):1017-30. PubMed ID: 15267939 [TBL] [Abstract][Full Text] [Related]
12. Water filling of hydrophilic nanopores. de la Llave E; Molinero V; Scherlis DA J Chem Phys; 2010 Jul; 133(3):034513. PubMed ID: 20649343 [TBL] [Abstract][Full Text] [Related]
13. Melting and crystallization of ice in partially filled nanopores. Solveyra EG; de la Llave E; Scherlis DA; Molinero V J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and structure of benzene on silica surfaces and in nanopores. Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890 [TBL] [Abstract][Full Text] [Related]
15. Pore Size Effect on Methane Adsorption in Mesoporous Silica Materials Studied by Small-Angle Neutron Scattering. Chiang WS; Fratini E; Baglioni P; Chen JH; Liu Y Langmuir; 2016 Sep; 32(35):8849-57. PubMed ID: 27512895 [TBL] [Abstract][Full Text] [Related]
16. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon. Puibasset J Langmuir; 2009 Jan; 25(2):903-11. PubMed ID: 19063620 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. Do DD; Do HD J Chem Phys; 2005 Aug; 123(8):084701. PubMed ID: 16164315 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure. Enevoldsen AD; Hansen FY; Diama A; Criswell L; Taub H J Chem Phys; 2007 Mar; 126(10):104703. PubMed ID: 17362077 [TBL] [Abstract][Full Text] [Related]
19. Microscopic mechanism of adsorption in cylindrical nanopores with heterogenous wall structure. Kuchta B; Firlej L; Marzec M; Boulet P Langmuir; 2008 Apr; 24(8):4013-9. PubMed ID: 18318558 [TBL] [Abstract][Full Text] [Related]