These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18532839)

  • 1. Theory of resonance energy transfer involving nanocrystals: the role of high multipoles.
    Baer R; Rabani E
    J Chem Phys; 2008 May; 128(18):184710. PubMed ID: 18532839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can luminescent quantum dots be efficient energy acceptors with organic dye donors?
    Clapp AR; Medintz IL; Fisher BR; Anderson GP; Mattoussi H
    J Am Chem Soc; 2005 Feb; 127(4):1242-50. PubMed ID: 15669863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.
    Nikiforov TT; Beechem JM
    Anal Biochem; 2006 Oct; 357(1):68-76. PubMed ID: 16860286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional fluorescence resonance energy transfer as a probe for protein folding: a theoretical study.
    Ting CL; Makarov DE
    J Chem Phys; 2008 Mar; 128(11):115102. PubMed ID: 18361617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor.
    Yu ZG
    J Chem Phys; 2007 Dec; 127(22):221101. PubMed ID: 18081378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET).
    Algar WR; Krull UJ
    Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast fluorescence resonance energy transfer in a reverse micelle: excitation wavelength dependence.
    Mondal SK; Ghosh S; Sahu K; Mandal U; Bhattacharyya K
    J Chem Phys; 2006 Dec; 125(22):224710. PubMed ID: 17176157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II).
    Li J; Mei F; Li WY; He XW; Zhang YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):811-7. PubMed ID: 18023245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge.
    Li Y; Ma Q; Wang X; Su X
    Luminescence; 2007; 22(1):60-6. PubMed ID: 17089351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical investigation of quantum confinement in PbSe nanocrystals at different points in the Brillouin zone.
    Koole R; Allan G; Delerue C; Meijerink A; Vanmaekelbergh D; Houtepen AJ
    Small; 2008 Jan; 4(1):127-33. PubMed ID: 18098244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer.
    Wei Q; Lee M; Yu X; Lee EK; Seong GH; Choo J; Cho YW
    Anal Biochem; 2006 Nov; 358(1):31-7. PubMed ID: 16989766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation control of fluorescence resonance energy transfer using DNA as a helical scaffold.
    Lewis FD; Zhang L; Zuo X
    J Am Chem Soc; 2005 Jul; 127(28):10002-3. PubMed ID: 16011355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical study of triplet energy transfer in rigid polymer films.
    Merkel PB; Dinnocenzo JP
    J Phys Chem A; 2008 Oct; 112(43):10790-800. PubMed ID: 18834093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of membrane domain size by fluorescence resonance energy transfer: effects of domain polydispersity and packing.
    Towles KB; Dan N
    Langmuir; 2007 Apr; 23(9):4737-9. PubMed ID: 17397204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence energy transfer methods in bioanalysis.
    Miller JN
    Analyst; 2005 Mar; 130(3):265-70. PubMed ID: 15724151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.