BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18533170)

  • 1. Prediction of retention indices for identification of fatty acid methyl esters.
    Farkas O; Zenkevich IG; Stout F; Kalivas JH; Héberger K
    J Chromatogr A; 2008 Jul; 1198-1199():188-95. PubMed ID: 18533170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols.
    Farkas O; Héberger K
    J Chem Inf Model; 2005; 45(2):339-46. PubMed ID: 15807497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters.
    Mjøs SA; Grahl-Nielsen O
    J Chromatogr A; 2006 Mar; 1110(1-2):171-80. PubMed ID: 16460747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of equivalent chain lengths from two-dimensional fatty acid retention indices.
    Mjøs SA
    J Chromatogr A; 2006 Jul; 1122(1-2):249-54. PubMed ID: 16701676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database.
    Härtig C
    J Chromatogr A; 2008 Jan; 1177(1):159-69. PubMed ID: 18037421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques.
    Qin LT; Liu SS; Liu HL; Tong J
    J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of gas chromatography/electron capture detector retention times of chlorinated pesticides, herbicides, and organohalides by multivariate chemometrics methods.
    Ghasemi J; Asadpour S; Abdolmaleki A
    Anal Chim Acta; 2007 Apr; 588(2):200-6. PubMed ID: 17386811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical prediction of the Kovat's retention index for oxygen-containing organic compounds using novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Anal Chim Acta; 2007 Jul; 594(2):279-89. PubMed ID: 17586126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of quantitative structure-retention relationship models on four stationary phases with different polarity for a diverse set of flavor compounds.
    Yan J; Cao DS; Guo FQ; Zhang LX; He M; Huang JH; Xu QS; Liang YZ
    J Chromatogr A; 2012 Feb; 1223():118-25. PubMed ID: 22218329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of trans isomers of eicosapentaenoic acid and docosahexaenoic acid methyl esters on cyanopropyl stationary phases.
    Mjøs SA
    J Chromatogr A; 2005 Dec; 1100(2):185-92. PubMed ID: 16236287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster and principal component analysis for Kováts' retention indices on apolar and polar stationary phases in gas chromatography.
    Dallos A; Ngo HS; Kresz R; Héberger K
    J Chromatogr A; 2008 Jan; 1177(1):175-82. PubMed ID: 18067899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of long-chain acetylenic hydrocarbons on non-polar stationary phases.
    Tretyakov KV; Babushok VI
    J Chromatogr A; 2009 Jan; 1216(5):882-4. PubMed ID: 19095239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.
    Skartland LK; Mjøs SA; Grung B
    J Chromatogr A; 2011 Sep; 1218(38):6823-31. PubMed ID: 21851946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-(chromatographic) retention relationships.
    Héberger K
    J Chromatogr A; 2007 Jul; 1158(1-2):273-305. PubMed ID: 17499256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional topographic index applied to the prediction of acyclic C5-C8 alkenes Kováts retention indices on polydimethylsiloxane and squalane columns.
    Ren Y; Liu H; Yao X; Liu M
    J Chromatogr A; 2007 Jun; 1155(1):105-11. PubMed ID: 17466321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical characterization of gas-liquid chromatographic stationary phases with quantum chemical descriptors.
    Hoffmann EA; Fekete ZA; Rajkó R; Pálinkó I; Körtvélyesi T
    J Chromatogr A; 2009 Mar; 1216(12):2540-7. PubMed ID: 19195662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention behaviour of polyunsaturated fatty acid methyl esters on porous graphitic carbon.
    Gaudin K; Hanai T; Chaminade P; Baillet A
    J Chromatogr A; 2007 Jul; 1157(1-2):56-64. PubMed ID: 17543313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.
    Thurnhofer S; Vetter W
    J Agric Food Chem; 2006 May; 54(9):3209-14. PubMed ID: 16637674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.