BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 18533173)

  • 1. Oligo(ethylene glycol) monolayers by silanization of silicon wafers: Real nature and stability.
    Dekeyser CM; Buron CC; Mc Evoy K; Dupont-Gillain CC; Marchand-Brynaert J; Jonas AM; Rouxhet PG
    J Colloid Interface Sci; 2008 Aug; 324(1-2):118-26. PubMed ID: 18533173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces.
    Cecchet F; De Meersman B; Demoustier-Champagne S; Nysten B; Jonas AM
    Langmuir; 2006 Jan; 22(3):1173-81. PubMed ID: 16430281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.
    Dekeyser CM; Buron CC; Derclaye SR; Jonas AM; Marchand-Brynaert J; Rouxhet PG
    J Colloid Interface Sci; 2012 Jul; 378(1):77-82. PubMed ID: 22560491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium.
    Park S; Chi YS; Choi IS; Seong J; Jon S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3507-11. PubMed ID: 17252800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces.
    Hoffmann C; Tovar GE
    J Colloid Interface Sci; 2006 Mar; 295(2):427-35. PubMed ID: 16256130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers.
    Müller R; Eidt A; Hiller KA; Katzur V; Subat M; Schweikl H; Imazato S; Ruhl S; Schmalz G
    Biomaterials; 2009 Oct; 30(28):4921-9. PubMed ID: 19545893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.
    Sharma S; Johnson RW; Desai TA
    Biosens Bioelectron; 2004 Sep; 20(2):227-39. PubMed ID: 15308226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers.
    Harada Y; Girolami GS; Nuzzo RG
    Langmuir; 2004 Dec; 20(25):10878-88. PubMed ID: 15568837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional monolayers for improved resistance to protein adsorption: oligo(ethylene glycol)-modified silicon and diamond surfaces.
    Clare TL; Clare BH; Nichols BM; Abbott NL; Hamers RJ
    Langmuir; 2005 Jul; 21(14):6344-55. PubMed ID: 15982041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the molecular design on the antifouling performance of poly(ethylene glycol) monolayers grafted on (111) Si.
    Perez E; Lahlil K; Rougeau C; Moraillon A; Chazalviel JN; Ozanam F; Gouget-Laemmel AC
    Langmuir; 2012 Oct; 28(41):14654-64. PubMed ID: 22988984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of tetra(ethylene oxide) terminated Si-C linked monolayers and their derivatization with glycine: an example of a generic strategy for the immobilization of biomolecules on silicon.
    Böcking T; Kilian KA; Hanley T; Ilyas S; Gaus K; Gal M; Gooding JJ
    Langmuir; 2005 Nov; 21(23):10522-9. PubMed ID: 16262316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films.
    Dyer MA; Ainslie KM; Pishko MV
    Langmuir; 2007 Jun; 23(13):7018-23. PubMed ID: 17506587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End terminal, poly(ethylene oxide) graft layers: surface forces and protein adsorption.
    Hamilton-Brown P; Gengenbach T; Griesser HJ; Meagher L
    Langmuir; 2009 Aug; 25(16):9149-56. PubMed ID: 19534458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption.
    Murthy R; Shell CE; Grunlan MA
    Biomaterials; 2009 May; 30(13):2433-9. PubMed ID: 19232435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size.
    Yu Q; Zhang Y; Chen H; Wu Z; Huang H; Cheng C
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):468-74. PubMed ID: 20045297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility.
    Wu L; Guo Z; Meng S; Zhong W; Du Q; Chou LL
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2781-8. PubMed ID: 20839802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective protein adsorption on micro-textured P-type and N-type silicon wafers.
    Lukas SJ; Ahmed J
    Biomed Sci Instrum; 2005; 41():181-6. PubMed ID: 15850102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning protein molecules on poly(ethylene glycol) coated Si(111).
    Jun Y; Cha T; Guo A; Zhu XY
    Biomaterials; 2004 Aug; 25(17):3503-9. PubMed ID: 15020124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-repellent silicon nitride surfaces: UV-induced formation of oligoethylene oxide monolayers.
    Rosso M; Nguyen AT; de Jong E; Baggerman J; Paulusse JM; Giesbers M; Fokkink RG; Norde W; Schroën K; van Rijn CJ; Zuilhof H
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):697-704. PubMed ID: 21309535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast interaction with DLC-coated Si substrates.
    Chai F; Mathis N; Blanchemain N; Meunier C; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1369-81. PubMed ID: 18495562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.