These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 18533662)
1. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662 [TBL] [Abstract][Full Text] [Related]
2. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Desjardins AE; Proctor RH Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953 [TBL] [Abstract][Full Text] [Related]
3. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930 [TBL] [Abstract][Full Text] [Related]
4. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173 [TBL] [Abstract][Full Text] [Related]
5. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912 [TBL] [Abstract][Full Text] [Related]
6. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Oldenburg E; Höppner F; Ellner F; Weinert J Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556 [TBL] [Abstract][Full Text] [Related]
7. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
8. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum. Oldenburg E; Ellner F Mycotoxin Res; 2015 Aug; 31(3):117-26. PubMed ID: 25904523 [TBL] [Abstract][Full Text] [Related]
10. Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from smallholder farms in Nepal. Desjardins AE; Jarosz AM; Plattner RD; Alexander NJ; Brown DW; Jurgenson JE J Agric Food Chem; 2004 Oct; 52(20):6341-6. PubMed ID: 15453711 [TBL] [Abstract][Full Text] [Related]
11. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Logrieco A; Moretti A; Perrone G; Mulè G Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992 [TBL] [Abstract][Full Text] [Related]
12. Fungal Species and Mycotoxins Associated with Maize Ear Rots Collected from the Eastern Cape in South Africa. Price JL; Visagie CM; Meyer H; Yilmaz N Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393173 [TBL] [Abstract][Full Text] [Related]
13. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina. Sampietro DA; Ficoseco ME; Jimenez CM; Vattuone MA; Catalán CA Int J Food Microbiol; 2012 Feb; 153(1-2):229-33. PubMed ID: 22119268 [TBL] [Abstract][Full Text] [Related]
14. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Lee J; Kim H; Jeon JJ; Kim HS; Zeller KA; Carter LL; Leslie JF; Lee YW Appl Environ Microbiol; 2012 Apr; 78(7):2161-7. PubMed ID: 22287004 [TBL] [Abstract][Full Text] [Related]
15. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
16. FUM1--a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Desjardins AE; Munkvold GP; Plattner RD; Proctor RH Mol Plant Microbe Interact; 2002 Nov; 15(11):1157-64. PubMed ID: 12423021 [TBL] [Abstract][Full Text] [Related]
17. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina. Sampietro DA; Apud GR; Belizán MM; Vattuone MA; Catalán CA Braz J Microbiol; 2013; 44(2):417-22. PubMed ID: 24294230 [TBL] [Abstract][Full Text] [Related]
18. A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Sampietro DA; Marín P; Iglesias J; Presello DA; Vattuone MA; Catalan CA; Gonzalez Jaen MT Fungal Biol; 2010 Jan; 114(1):74-81. PubMed ID: 20965064 [TBL] [Abstract][Full Text] [Related]
19. Occurrence of Fusarium species and mycotoxins in nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. Desjardins AE; Manandhar G; Plattner RD; Maragos CM; Shrestha K; McCormick SP J Agric Food Chem; 2000 Apr; 48(4):1377-83. PubMed ID: 10775401 [TBL] [Abstract][Full Text] [Related]
20. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Jurado M; Vázquez C; Marín S; Sanchis V; Teresa González-Jaén M Syst Appl Microbiol; 2006 Dec; 29(8):681-9. PubMed ID: 16513314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]