These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18533673)

  • 1. Efficient and versatile synthesis of new porphyrins bearing an N3O moiety: ligands for mimicking cytochrome c oxidase.
    Ruzié C; Even-Hernandez P; Boitrel B
    Org Lett; 2008 Jul; 10(13):2673-6. PubMed ID: 18533673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expeditious synthesis of tailed tren-capped porphyrins.
    Even P; Ruzié C; Ricard D; Boitrel B
    Org Lett; 2005 Sep; 7(20):4325-8. PubMed ID: 16178524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appending a tris-imidazole ligand with a Tyr 244 mimic on the distal face of bromoacetamidoporphyrin.
    Collman JP; Decréau RA; Costanzo S
    Org Lett; 2004 Mar; 6(6):1033-6. PubMed ID: 15012093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase.
    Liu JG; Naruta Y; Tani F; Chishiro T; Tachi Y
    Chem Commun (Camb); 2004 Jan; (1):120-1. PubMed ID: 14737361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on an electrode.
    Friedrich MG; Giebeta F; Naumann R; Knoll W; Ataka K; Heberle J; Hrabakova J; Murgida DH; Hildebrandt P
    Chem Commun (Camb); 2004 Nov; (21):2376-7. PubMed ID: 15514773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging porphyrins with organometallics: synthesis and applications.
    Suijkerbuijk BM; Klein Gebbink RJ
    Angew Chem Int Ed Engl; 2008; 47(39):7396-421. PubMed ID: 18726980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient synthesis of a porphyrin-N-tripod conjugate with covalently linked proximal ligand: toward new-generation active-site models of cytochrome c oxidase.
    Collman JP; Zhong M; Wang Z; Rapta M; Rose E
    Org Lett; 1999 Dec; 1(13):2121-4. PubMed ID: 10836066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 and CO binding to tetraaza-tripodal-capped iron(II) porphyrins.
    Ruzié C; Even P; Ricard D; Roisnel T; Boitrel B
    Inorg Chem; 2006 Feb; 45(3):1338-48. PubMed ID: 16441146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c oxidase, ligands and electrons.
    Brunori M; Giuffrè A; Sarti P
    J Inorg Biochem; 2005 Jan; 99(1):324-36. PubMed ID: 15598510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and structural characterization of cross-linked histidine-phenol Cu(ii) complexes as cytochrome c oxidase active site models.
    White KN; Sen I; Szundi I; Landaverry YR; Bria LE; Konopelski JP; Olmstead MM; Einarsdóttir O
    Chem Commun (Camb); 2007 Aug; (31):3252-4. PubMed ID: 17668091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of functionalized porphyrins as oxygen ligand receptors.
    Wada K; Mizutani T; Kitagawa S
    J Org Chem; 2003 Jun; 68(13):5123-31. PubMed ID: 12816466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of cytochrome c oxidase models bearing a Tyr244 mimic.
    Collman JP; Decréau RA; Zhang C
    J Org Chem; 2004 May; 69(10):3546-9. PubMed ID: 15132568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic total syntheses of cassiarins A and B.
    Yao YS; Yao ZJ
    J Org Chem; 2008 Jul; 73(14):5221-5. PubMed ID: 18570405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis.
    Megiatto JD; Patterson D; Sherman BD; Moore TA; Gust D; Moore AL
    Chem Commun (Camb); 2012 May; 48(38):4558-60. PubMed ID: 22473504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme-protein active site models via self-assembly in water.
    Fiammengo R; Wojciechowski K; Crego-Calama M; Timmerman P; Figoli A; Wessling M; Reinhoudt DN
    Org Lett; 2003 Sep; 5(19):3367-70. PubMed ID: 12967276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach towards artificial quinone pools by use of photo- and redox-active dendritic molecules.
    Nagata T; Kikuzawa Y
    Biochim Biophys Acta; 2007 Jun; 1767(6):648-52. PubMed ID: 17196546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium(III) complexes of methyl pyropheophorbide-a as synthetic models for investigation of diastereomerically controlled axial ligation towards chlorophylls.
    Sasaki S; Mizoguchi T; Tamiaki H
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1168-71. PubMed ID: 16403627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-turnover intermolecular reaction between a Fe(III)-superoxide-Cu(I) cytochrome c oxidase model and exogeneous Tyr244 mimics.
    Collman JP; Decréau RA; Sunderland CJ
    Chem Commun (Camb); 2006 Oct; (37):3894-6. PubMed ID: 17268662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dodecameric porphyrin wheel.
    Peng X; Aratani N; Takagi A; Matsumoto T; Kawai T; Hwang IW; Ahn TK; Kim D; Osuka A
    J Am Chem Soc; 2004 Apr; 126(14):4468-9. PubMed ID: 15070335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.