These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18533685)

  • 1. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.
    Murnick DE; Dogru O; Ilkmen E
    Anal Chem; 2008 Jul; 80(13):4820-4. PubMed ID: 18533685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C Analysis via Intracavity Optogalvanic Spectroscopy.
    Murnick D; Dogru O; Ilkmen E
    Nucl Instrum Methods Phys Res B; 2010 Apr; 268(7-8):708-711. PubMed ID: 20448803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-based analysis of carbon isotope ratios.
    Murnick DE; Peer BJ
    Science; 1994 Feb; 263(5149):945-7. PubMed ID: 8310291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-based radiocarbon detection in the laboratory: How soon?
    Murnick DE
    J Labelled Comp Radiopharm; 2019 Sep; 62(11):768-775. PubMed ID: 31369168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.
    Paul D; Meijer HA
    Anal Chem; 2015 Sep; 87(17):9025-32. PubMed ID: 26252648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the optogalvanic effect (OGE) for isotope ratio spectrometry of 13CO2 and 14CO2.
    Murnick DE; Okil JO
    Isotopes Environ Health Stud; 2005 Dec; 41(4):363-71. PubMed ID: 16543191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].
    He Y; Zhang YJ; Kan RF; Xia H; Geng H; Ruan J; Wang M; Cui XJ; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):10-3. PubMed ID: 19385195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature Optical Detection of
    McCartt AD; Jiang J
    ACS Sens; 2022 Nov; 7(11):3258-3264. PubMed ID: 36315969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diode laser photoacoustic spectroscopy of CO
    Alahmari S; Kang XW; Hippler M
    Anal Bioanal Chem; 2019 Jul; 411(17):3777-3787. PubMed ID: 31111181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical chemistry: Ultrasensitive radiocarbon detection.
    Zare RN
    Nature; 2012 Feb; 482(7385):312-3. PubMed ID: 22337044
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of 14C abundance in soil respiration using acclerator mass spectrometry.
    Koarashi J; Iida T; Moriizumi J; Asano T
    J Environ Radioact; 2004; 75(2):117-32. PubMed ID: 15172722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies.
    Kratochwil NA; Dueker SR; Muri D; Senn C; Yoon H; Yu BY; Lee GH; Dong F; Otteneder MB
    PLoS One; 2018; 13(10):e0205435. PubMed ID: 30332475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection.
    Thorpe MJ; Moll KD; Jones RJ; Safdi B; Ye J
    Science; 2006 Mar; 311(5767):1595-9. PubMed ID: 16543457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the efficiency of supercritical fluid extraction for the decontamination of archaeological bones prior to radiocarbon dating.
    Devièse T; Ribechini E; Querci D; Higham T
    Analyst; 2019 Oct; 144(20):6128-6135. PubMed ID: 31535118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents.
    Awtry AR; Miller JH
    Appl Phys B; 2002; 75(2-3):255-60. PubMed ID: 12599396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of accelerator mass spectrometry (AMS) for high-sensitivity measurements of 14CO2 in long-term studies of fat metabolism.
    Stenström K; Leide-Svegborn S; Erlandsson B; Hellborg R; Mattsson S; Nilsson LE; Nosslin B; Skog G; Wiebert A
    Appl Radiat Isot; 1996 Apr; 47(4):417-22. PubMed ID: 8624508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.
    Rakowski AZ; Nakamura T; Pazdur A
    J Environ Radioact; 2008 Oct; 99(10):1558-65. PubMed ID: 18272268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser diode photoacoustic detection in the infrared and near infrared spectral ranges.
    Horká V; Civis S; Xu LH; Lees RM
    Analyst; 2005 Aug; 130(8):1148-54. PubMed ID: 16021213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude-Modulated Cavity-Enhanced Absorption Spectroscopy with Phase-Sensitive Detection: A New Approach Applied to the Fast and Sensitive Detection of NO
    Zhou J; Zhao W; Zhang Y; Fang B; Cheng F; Xu X; Ni S; Zhang W; Ye C; Chen W; Venables DS
    Anal Chem; 2022 Feb; 94(7):3368-3375. PubMed ID: 35143171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry.
    Dingley KH; Roberts ML; Velsko CA; Turteltaub KW
    Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.