These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18533716)

  • 41. Perspective: nanomotors without moving parts that propel themselves in solution.
    Kapral R
    J Chem Phys; 2013 Jan; 138(2):020901. PubMed ID: 23320656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.
    Ahmed S; Wang W; Mair LO; Fraleigh RD; Li S; Castro LA; Hoyos M; Huang TJ; Mallouk TE
    Langmuir; 2013 Dec; 29(52):16113-8. PubMed ID: 24345038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3-D streamline steering by nodes arrayed in an entangled microfluidic network.
    Li CW; Yang M
    Lab Chip; 2007 Dec; 7(12):1712-6. PubMed ID: 18030391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immunosorbent assay microchip system for analysis of human immunoglobulin G on MagnaBind carboxyl derivatized beads.
    Chen T; Lei JD; Tong AJ
    Luminescence; 2005; 20(4-5):256-60. PubMed ID: 16134225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polycarbonate microchannel network with carpet of gold nanowires as SERS-active device.
    Gamby J; Rudolf A; Abid M; Girault HH; Deslouis C; Tribollet B
    Lab Chip; 2009 Jun; 9(12):1806-8. PubMed ID: 19495467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemically powered micro- and nanomotors.
    Sánchez S; Soler L; Katuri J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1414-44. PubMed ID: 25504117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An investigation of the effects of inlet channel geometry on electrokinetic instabilities.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2009 Feb; 11(1):9-16. PubMed ID: 18819007
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery.
    Díez P; Lucena-Sánchez E; Escudero A; Llopis-Lorente A; Villalonga R; Martínez-Máñez R
    ACS Nano; 2021 Mar; 15(3):4467-4480. PubMed ID: 33677957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fuel-Free Micro-/Nanomotors as Intelligent Therapeutic Agents.
    Liu L; Gao J; Wilson DA; Tu Y; Peng F
    Chem Asian J; 2019 Jul; 14(14):2325-2335. PubMed ID: 30843328
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip.
    Yamanishi Y; Sakuma S; Onda K; Arai F
    Biomed Microdevices; 2010 Aug; 12(4):745-52. PubMed ID: 20437256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidics with MALDI analysis for proteomics--a review.
    Lee J; Soper SA; Murray KK
    Anal Chim Acta; 2009 Sep; 649(2):180-90. PubMed ID: 19699392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme.
    Mazutis L; Baret JC; Treacy P; Skhiri Y; Araghi AF; Ryckelynck M; Taly V; Griffiths AD
    Lab Chip; 2009 Oct; 9(20):2902-8. PubMed ID: 19789742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Template-assisted fabrication of salt-independent catalytic tubular microengines.
    Manesh KM; Cardona M; Yuan R; Clark M; Kagan D; Balasubramanian S; Wang J
    ACS Nano; 2010 Apr; 4(4):1799-804. PubMed ID: 20230041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow-free transport of cells in microchannels by frequency-modulated ultrasound.
    Manneberg O; Vanherberghen B; Onfelt B; Wiklund M
    Lab Chip; 2009 Mar; 9(6):833-7. PubMed ID: 19255666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors.
    Ji F; Li T; Yu S; Wu Z; Zhang L
    ACS Nano; 2021 Mar; 15(3):5118-5128. PubMed ID: 33687190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.