These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18533821)

  • 1. Just-in-time connectivity for large spiking networks.
    Lytton WW; Omurtag A; Neymotin SA; Hines ML
    Neural Comput; 2008 Nov; 20(11):2745-56. PubMed ID: 18533821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiking neural network simulation: memory-optimal synaptic event scheduling.
    Stewart RD; Gurney KN
    J Comput Neurosci; 2011 Jun; 30(3):721-8. PubMed ID: 21046215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model.
    Ito S; Hansen ME; Heiland R; Lumsdaine A; Litke AM; Beggs JM
    PLoS One; 2011; 6(11):e27431. PubMed ID: 22102894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vectorized algorithms for spiking neural network simulation.
    Brette R; Goodman DF
    Neural Comput; 2011 Jun; 23(6):1503-35. PubMed ID: 21395437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.
    Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R
    Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.
    Madadi Asl M; Valizadeh A; Tass PA
    Chaos; 2018 Oct; 28(10):106308. PubMed ID: 30384625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit.
    Scorcioni R; Hamilton DJ; Ascoli GA
    Neural Netw; 2008 Oct; 21(8):1153-63. PubMed ID: 18595658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbing low dimensional activity manifolds in spiking neuronal networks.
    Wärnberg E; Kumar A
    PLoS Comput Biol; 2019 May; 15(5):e1007074. PubMed ID: 31150376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
    Minkovich K; Thibeault CM; O'Brien MJ; Nogin A; Cho Y; Srinivasa N
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):316-31. PubMed ID: 24807031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate emergent synchrony in spatially coupled spiking neurons with discrete interaction.
    Supèr H; Romeo A
    Neural Comput; 2014 Nov; 26(11):2419-40. PubMed ID: 25149703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity.
    Zaytsev YV; Morrison A; Deger M
    J Comput Neurosci; 2015 Aug; 39(1):77-103. PubMed ID: 26041729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of synaptic connectivity and external variability in neural microcircuits.
    Baker C; Froudarakis E; Yatsenko D; Tolias AS; Rosenbaum R
    J Comput Neurosci; 2020 May; 48(2):123-147. PubMed ID: 32080777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex.
    Lang S; Dercksen VJ; Sakmann B; Oberlaender M
    Neural Netw; 2011 Nov; 24(9):998-1011. PubMed ID: 21775101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connection-type-specific biases make uniform random network models consistent with cortical recordings.
    Tomm C; Avermann M; Petersen C; Gerstner W; Vogels TP
    J Neurophysiol; 2014 Oct; 112(8):1801-14. PubMed ID: 24944218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses.
    Mattia M; Del Giudice P
    Neural Comput; 2000 Oct; 12(10):2305-29. PubMed ID: 11032036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization methods for spiking neurons and networks.
    Russell A; Orchard G; Dong Y; Mihalas S; Niebur E; Tapson J; Etienne-Cummings R
    IEEE Trans Neural Netw; 2010 Dec; 21(12):1950-62. PubMed ID: 20959265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants.
    D'Haene M; Schrauwen B; Van Campenhout J; Stroobandt D
    Neural Comput; 2009 Apr; 21(4):1068-99. PubMed ID: 18928367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
    Vogelstein RJ; Mallik U; Vogelstein JT; Cauwenberghs G
    IEEE Trans Neural Netw; 2007 Jan; 18(1):253-65. PubMed ID: 17278476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double queue method: a numerical method for integrate-and-fire neuron networks.
    Lee G; Farhat NH
    Neural Netw; 2001; 14(6-7):921-32. PubMed ID: 11665782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.