BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 18534020)

  • 1. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens.
    Yin Z; Zhou X; Bakal C; Li F; Sun Y; Perrimon N; Wong ST
    BMC Bioinformatics; 2008 Jun; 9():264. PubMed ID: 18534020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online Phenotype Discovery based on Minimum Classification Error Model.
    Yin Z; Zhou X; Sun Y; Wong ST
    Pattern Recognit; 2009 Apr; 42(4):509-522. PubMed ID: 20161245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards automated cellular image segmentation for RNAi genome-wide screening.
    Zhou X; Liu KY; Bradley P; Perrimon N; Wong ST
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):885-92. PubMed ID: 16685930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling.
    Wang J; Zhou X; Li F; Bradley PL; Chang SF; Perrimon N; Wong ST
    J Biomed Inform; 2009 Feb; 42(1):32-40. PubMed ID: 18547870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype recognition with combined features and random subspace classifier ensemble.
    Zhang B; Pham TD
    BMC Bioinformatics; 2011 Apr; 12():128. PubMed ID: 21529372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel phenotypic dissimilarity method for image-based high-throughput screens.
    Zhang X; Boutros M
    BMC Bioinformatics; 2013 Nov; 14():336. PubMed ID: 24256072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GenomeRNAi: a database for cell-based RNAi phenotypes.
    Horn T; Arziman Z; Berger J; Boutros M
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D492-7. PubMed ID: 17135194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning.
    Jones TR; Carpenter AE; Lamprecht MR; Moffat J; Silver SJ; Grenier JK; Castoreno AB; Eggert US; Root DE; Golland P; Sabatini DM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1826-31. PubMed ID: 19188593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular phenotype recognition for high-content RNA interference genome-wide screening.
    Wang J; Zhou X; Bradley PL; Chang SF; Perrimon N; Wong ST
    J Biomol Screen; 2008 Jan; 13(1):29-39. PubMed ID: 18227224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FLIGHT Drosophila RNAi database: 2010 update.
    Sims D; Bursteinas B; Jain E; Gao Q; Baum B; Zvelebil M
    Fly (Austin); 2010; 4(4):344-8. PubMed ID: 20855970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi screening: new approaches, understandings, and organisms.
    Mohr SE; Perrimon N
    Wiley Interdiscip Rev RNA; 2012; 3(2):145-58. PubMed ID: 21953743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis.
    Yilmazel B; Hu Y; Sigoillot F; Smith JA; Shamu CE; Perrimon N; Mohr SE
    BMC Bioinformatics; 2014 Jun; 15():192. PubMed ID: 24934636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of neural outgrowth genes using genome-wide RNAi.
    Sepp KJ; Hong P; Lizarraga SB; Liu JS; Mejia LA; Walsh CA; Perrimon N
    PLoS Genet; 2008 Jul; 4(7):e1000111. PubMed ID: 18604272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models.
    Chalabi Hajkarim M; Karjalainen E; Osipovitch M; Dimopoulos K; Gordon SL; Ambri F; Rasmussen KD; Grønbæk K; Helin K; Wennerberg K; Won KJ
    Elife; 2022 Feb; 11():. PubMed ID: 35166670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular phenotyping by RNAi.
    Fuchs F; Boutros M
    Brief Funct Genomic Proteomic; 2006 Mar; 5(1):52-6. PubMed ID: 16769679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme.
    Wiles AM; Ravi D; Bhavani S; Bishop AJ
    J Biomol Screen; 2008 Sep; 13(8):777-84. PubMed ID: 18753689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives.
    Ye F; Bauer JA; Pietenpol JA; Shyr Y
    BMC Genomics; 2012; 13 Suppl 8(Suppl 8):S3. PubMed ID: 23281588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging.
    Fuchs F; Pau G; Kranz D; Sklyar O; Budjan C; Steinbrink S; Horn T; Pedal A; Huber W; Boutros M
    Mol Syst Biol; 2010 Jun; 6():370. PubMed ID: 20531400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical methods for analysis of high-throughput RNA interference screens.
    Birmingham A; Selfors LM; Forster T; Wrobel D; Kennedy CJ; Shanks E; Santoyo-Lopez J; Dunican DJ; Long A; Kelleher D; Smith Q; Beijersbergen RL; Ghazal P; Shamu CE
    Nat Methods; 2009 Aug; 6(8):569-75. PubMed ID: 19644458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening.
    Li F; Zhou X; Ma J; Wong ST
    J Microsc; 2007 May; 226(Pt 2):121-32. PubMed ID: 17444941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.