These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 18534020)

  • 41. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
    Zhong R; Dong X; Levine B; Xie Y; Xiao G
    J Biomol Screen; 2015 Sep; 20(8):998-1002. PubMed ID: 25548139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noise reduction in genome-wide perturbation screens using linear mixed-effect models.
    Yu D; Danku J; Baxter I; Kim S; Vatamaniuk OK; Salt DE; Vitek O
    Bioinformatics; 2011 Aug; 27(16):2173-80. PubMed ID: 21685046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
    Walter T; Held M; Neumann B; Hériché JK; Conrad C; Pepperkok R; Ellenberg J
    J Struct Biol; 2010 Apr; 170(1):1-9. PubMed ID: 19854275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole-animal high-throughput screens: the C. elegans model.
    O'Rourke EJ; Conery AL; Moy TI
    Methods Mol Biol; 2009; 486():57-75. PubMed ID: 19347616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens.
    Muellner MK; Duernberger G; Ganglberger F; Kerzendorfer C; Uras IZ; Schoenegger A; Bagienski K; Colinge J; Nijman SM
    BMC Bioinformatics; 2014 Apr; 15():98. PubMed ID: 24712852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A protein network-guided screen for cell cycle regulators in Drosophila.
    Guest ST; Yu J; Liu D; Hines JA; Kashat MA; Finley RL
    BMC Syst Biol; 2011 May; 5():65. PubMed ID: 21548953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic segmentation of high-throughput RNAi fluorescent cellular images.
    Yan P; Zhou X; Shah M; Wong ST
    IEEE Trans Inf Technol Biomed; 2008 Jan; 12(1):109-17. PubMed ID: 18270043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and evaluation of genome-wide libraries for RNA interference screens.
    Horn T; Sandmann T; Boutros M
    Genome Biol; 2010; 11(6):R61. PubMed ID: 20550664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Median absolute deviation to improve hit selection for genome-scale RNAi screens.
    Chung N; Zhang XD; Kreamer A; Locco L; Kuan PF; Bartz S; Linsley PS; Ferrer M; Strulovici B
    J Biomol Screen; 2008 Feb; 13(2):149-58. PubMed ID: 18216396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of novel targets with high throughput RNA interference screening.
    Kassner PD
    Comb Chem High Throughput Screen; 2008 Mar; 11(3):175-84. PubMed ID: 18336211
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale image-based screening and profiling of cellular phenotypes.
    Bougen-Zhukov N; Loh SY; Lee HK; Loo LH
    Cytometry A; 2017 Feb; 91(2):115-125. PubMed ID: 27434125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell perturbation screens for target identification by RNAi.
    Demir K; Boutros M
    Methods Mol Biol; 2012; 910():1-13. PubMed ID: 22821589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compound classification using image-based cellular phenotypes.
    Adams CL; Kutsyy V; Coleman DA; Cong G; Crompton AM; Elias KA; Oestreicher DR; Trautman JK; Vaisberg E
    Methods Enzymol; 2006; 414():440-68. PubMed ID: 17110206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High content screening in neurodegenerative diseases.
    Jain S; van Kesteren RE; Heutink P
    J Vis Exp; 2012 Jan; (59):e3452. PubMed ID: 22257990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways.
    Sachse C; Krausz E; Krönke A; Hannus M; Walsh A; Grabner A; Ovcharenko D; Dorris D; Trudel C; Sönnichsen B; Echeverri CJ
    Methods Enzymol; 2005; 392():242-77. PubMed ID: 15644186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. cellXpress: a fast and user-friendly software platform for profiling cellular phenotypes.
    Laksameethanasan D; Tan R; Toh G; Loo LH
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S4. PubMed ID: 24564609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An effective method for controlling false discovery and false nondiscovery rates in genome-scale RNAi screens.
    Zhang XD
    J Biomol Screen; 2010 Oct; 15(9):1116-22. PubMed ID: 20855561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-cell analysis of population context advances RNAi screening at multiple levels.
    Snijder B; Sacher R; Rämö P; Liberali P; Mench K; Wolfrum N; Burleigh L; Scott CC; Verheije MH; Mercer J; Moese S; Heger T; Theusner K; Jurgeit A; Lamparter D; Balistreri G; Schelhaas M; De Haan CA; Marjomäki V; Hyypiä T; Rottier PJ; Sodeik B; Marsh M; Gruenberg J; Amara A; Greber U; Helenius A; Pelkmans L
    Mol Syst Biol; 2012 Apr; 8():579. PubMed ID: 22531119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated classification of mitotic phenotypes of human cells using fluorescent proteins.
    Harder N; Eils R; Rohr K
    Methods Cell Biol; 2008; 85():539-54. PubMed ID: 18155478
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide screening for gene function using RNAi in mammalian cells.
    Cullen LM; Arndt GM
    Immunol Cell Biol; 2005 Jun; 83(3):217-23. PubMed ID: 15877598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.