BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 18534833)

  • 1. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable sugar-based protein formulations by supercritical fluid drying.
    Jovanović N; Bouchard A; Sutter M; Van Speybroeck M; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Int J Pharm; 2008 Jan; 346(1-2):102-8. PubMed ID: 17659851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclone selection influences protein damage during drying in a mini spray-dryer.
    Bögelein J; Lee G
    Int J Pharm; 2010 Nov; 401(1-2):68-71. PubMed ID: 20887779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation.
    Okamoto H; Danjo K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):433-46. PubMed ID: 17996326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.
    Moshashaée S; Bisrat M; Forbes RT; Quinn EA; Nyqvist H; York P
    J Pharm Pharmacol; 2003 Feb; 55(2):185-92. PubMed ID: 12631410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions.
    Bouchard A; Jovanović N; Hofland GW; Jiskoot W; Mendes E; Crommelin DJ; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Mar; 68(3):781-94. PubMed ID: 17702554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.
    Nuchuchua O; Every HA; Hofland GW; Jiskoot W
    Eur J Pharm Biopharm; 2014 Nov; 88(3):919-30. PubMed ID: 25262979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of cefpodoxime proxetil fine particles using supercritical fluids.
    Chu J; Li G; Row KH; Kim H; Lee YW
    Int J Pharm; 2009 Mar; 369(1-2):85-91. PubMed ID: 19041383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality by design - Spray drying of insulin intended for inhalation.
    Maltesen MJ; Bjerregaard S; Hovgaard L; Havelund S; van de Weert M
    Eur J Pharm Biopharm; 2008 Nov; 70(3):828-38. PubMed ID: 18755270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid.
    Manosroi A; Chutoprapat R; Abe M; Manosroi J
    Int J Pharm; 2008 Mar; 352(1-2):248-55. PubMed ID: 18036754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.
    Pasquali I; Bettini R; Giordano F
    Eur J Pharm Sci; 2006 Mar; 27(4):299-310. PubMed ID: 16388936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the physical properties of spray-dried stabilised lysozyme particles.
    Liao YH; Brown MB; Quader A; Martin GP
    J Pharm Pharmacol; 2003 Sep; 55(9):1213-21. PubMed ID: 14604464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.