These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18534924)

  • 1. Evidence for a random entry of Ca2+ into human red cells.
    Baunbaek M; Bennekou P
    Bioelectrochemistry; 2008 Aug; 73(2):145-50. PubMed ID: 18534924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of RBC volume distributions by oxidants (phenazine methosulfate and tert-butyl hydroperoxide): role of Gardos channel activation.
    Lisovskaya IL; Shcherbachenko IM; Volkova RI; Tikhonov VP
    Bioelectrochemistry; 2008 Jun; 73(1):49-54. PubMed ID: 18495553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cell ageing on Ca2+ influx into human red cells.
    Romero PJ; Romero EA
    Cell Calcium; 1999; 26(3-4):131-7. PubMed ID: 10598277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline hemolysis fragility is dependent on cell shape: results from a morphology tracker.
    Ionescu-Zanetti C; Wang LP; Di Carlo D; Hung P; Di Blas A; Hughey R; Lee LP
    Cytometry A; 2005 Jun; 65(2):116-23. PubMed ID: 15849725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate.
    Gibson JS; Muzyamba MC
    Bioelectrochemistry; 2004 May; 62(2):147-52. PubMed ID: 15039018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IKCa agonist (NS309)-elicited all-or-none dehydration response of human red blood cells is cell-age dependent.
    Seear RV; Lew VL
    Cell Calcium; 2011 Nov; 50(5):444-8. PubMed ID: 21937109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells.
    Lew VL; Tiffert T; Etzion Z; Perdomo D; Daw N; Macdonald L; Bookchin RM
    Blood; 2005 Jan; 105(1):361-7. PubMed ID: 15339840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors raising intracellular calcium increase red blood cell heterogeneity in density and critical osmolality.
    Lisovskaya IL; Rozenberg JM; Nesterenko VM; Samokhina AA
    Med Sci Monit; 2004 Mar; 10(3):BR67-76. PubMed ID: 14976462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation-induced calcium-dependent dehydration of normal human red blood cells.
    Shcherbachenko IM; Lisovskaya IL; Tikhonov VP
    Free Radic Res; 2007 May; 41(5):536-45. PubMed ID: 17454136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abrogation of calcium exclusion by erythrocytes under hypotonic stress.
    Bowdler AJ; Williams RH; Dougherty RM
    Scand J Haematol; 1984 Mar; 32(3):283-96. PubMed ID: 6322285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of heavy metal ions on osmotic resistance of human red blood cells.
    Karai I; Fukumoto K; Horiguchi S
    Osaka City Med J; 1979; 25(2):153-57. PubMed ID: 262779
    [No Abstract]   [Full Text] [Related]  

  • 13. Red blood cells, compasses and snap shots.
    Hoffman JF
    Blood Cells Mol Dis; 2018 Jul; 71():67-70. PubMed ID: 29599084
    [No Abstract]   [Full Text] [Related]  

  • 14. The human red cell voltage-dependent cation channel. Part III: Distribution homogeneity and pH dependence.
    Bennekou P; Barksmann TL; Christophersen P; Kristensen BI
    Blood Cells Mol Dis; 2006; 36(1):10-4. PubMed ID: 16376587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the intracellular Ca2+ content in human red blood cells in the presence of glycerol.
    Kofanova OA; Zemlyanskikh NG; Ivanova L; Bernhardt I
    Bioelectrochemistry; 2008 Aug; 73(2):151-4. PubMed ID: 18585980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Relation between vitamin A and the fragility of red blood cells subjected to continuous mechanical trauma].
    Liani M; Rossi M; Nubile G
    Boll Soc Ital Biol Sper; 1983 Nov; 59(11):1744-8. PubMed ID: 6667317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of the Na+/Ca2+ exchanger largely modulates the Ca2+i signal induced by hypo-osmotic stress in rat cerebellar astrocytes. The effect of osmolarity on exchange activity.
    Rojas H; Ramos M; Benaim G; Caputo C; DiPolo R
    J Physiol Sci; 2008 Aug; 58(4):277-9. PubMed ID: 18638422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes.
    Xiao L; Coutu P; Villeneuve LR; Tadevosyan A; Maguy A; Le Bouter S; Allen BG; Nattel S
    Circ Res; 2008 Sep; 103(7):733-42. PubMed ID: 18723449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces.
    Bernhardt I; Ivanova L; Langehanenberg P; Kemper B; von Bally G
    Bioelectrochemistry; 2008 Aug; 73(2):92-6. PubMed ID: 18230419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of time-dependent shape changes in red blood cells.
    Rudenko SV; Crowe JH; Tablin F
    Biochemistry (Mosc); 1998 Dec; 63(12):1385-94. PubMed ID: 9916155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.