These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 18534980)
1. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. Samavati L; Lee I; Mathes I; Lottspeich F; Hüttemann M J Biol Chem; 2008 Jul; 283(30):21134-44. PubMed ID: 18534980 [TBL] [Abstract][Full Text] [Related]
2. Isolation of regulatory-competent, phosphorylated cytochrome C oxidase. Lee I; Salomon AR; Yu K; Samavati L; Pecina P; Pecinova A; Hüttemann M Methods Enzymol; 2009; 457():193-210. PubMed ID: 19426869 [TBL] [Abstract][Full Text] [Related]
3. Higd1a is a positive regulator of cytochrome c oxidase. Hayashi T; Asano Y; Shintani Y; Aoyama H; Kioka H; Tsukamoto O; Hikita M; Shinzawa-Itoh K; Takafuji K; Higo S; Kato H; Yamazaki S; Matsuoka K; Nakano A; Asanuma H; Asakura M; Minamino T; Goto Y; Ogura T; Kitakaze M; Komuro I; Sakata Y; Tsukihara T; Yoshikawa S; Takashima S Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1553-8. PubMed ID: 25605899 [TBL] [Abstract][Full Text] [Related]
4. Teriflunomide shifts the astrocytic bioenergetic profile from oxidative metabolism to glycolysis and attenuates TNFα-induced inflammatory responses. Kabiraj P; Grund EM; Clarkson BDS; Johnson RK; LaFrance-Corey RG; Lucchinetti CF; Howe CL Sci Rep; 2022 Feb; 12(1):3049. PubMed ID: 35197552 [TBL] [Abstract][Full Text] [Related]
5. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Castellano-González G; Pichaud N; Ballard JW; Bessede A; Marcal H; Guillemin GJ Oncotarget; 2016 Feb; 7(7):7426-40. PubMed ID: 26760769 [TBL] [Abstract][Full Text] [Related]
6. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Hüttemann M; Helling S; Sanderson TH; Sinkler C; Samavati L; Mahapatra G; Varughese A; Lu G; Liu J; Ramzan R; Vogt S; Grossman LI; Doan JW; Marcus K; Lee I Biochim Biophys Acta; 2012 Apr; 1817(4):598-609. PubMed ID: 21771582 [TBL] [Abstract][Full Text] [Related]
8. Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. Yu H; Lee I; Salomon AR; Yu K; Hüttemann M Biochim Biophys Acta; 2008; 1777(7-8):1066-71. PubMed ID: 18471988 [TBL] [Abstract][Full Text] [Related]
9. GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation? Ramzan R; Weber P; Linne U; Vogt S Biochem Soc Trans; 2013 Oct; 41(5):1294-7. PubMed ID: 24059522 [TBL] [Abstract][Full Text] [Related]
10. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. Pannala VR; Camara AK; Dash RK J Appl Physiol (1985); 2016 Nov; 121(5):1196-1207. PubMed ID: 27633738 [TBL] [Abstract][Full Text] [Related]
11. Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells. Oliva CR; Markert T; Ross LJ; White EL; Rasmussen L; Zhang W; Everts M; Moellering DR; Bailey SM; Suto MJ; Griguer CE J Biol Chem; 2016 Nov; 291(46):24188-24199. PubMed ID: 27679486 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia. Sepuri NBV; Angireddy R; Srinivasan S; Guha M; Spear J; Lu B; Anandatheerthavarada HK; Suzuki CK; Avadhani NG Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):519-528. PubMed ID: 28442264 [TBL] [Abstract][Full Text] [Related]
13. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system. Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Taylor CT; Moncada S Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):643-7. PubMed ID: 19713530 [TBL] [Abstract][Full Text] [Related]
15. Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Galati D; Srinivasan S; Raza H; Prabu SK; Hardy M; Chandran K; Lopez M; Kalyanaraman B; Avadhani NG Biochem J; 2009 May; 420(3):439-49. PubMed ID: 19338496 [TBL] [Abstract][Full Text] [Related]
16. Suppression of the inducible form of nitric oxide synthase prior to traumatic brain injury improves cytochrome c oxidase activity and normalizes cellular energy levels. Hüttemann M; Lee I; Kreipke CW; Petrov T Neuroscience; 2008 Jan; 151(1):148-54. PubMed ID: 18037245 [TBL] [Abstract][Full Text] [Related]
17. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. Srinivasan S; Spear J; Chandran K; Joseph J; Kalyanaraman B; Avadhani NG PLoS One; 2013; 8(10):e77129. PubMed ID: 24130844 [TBL] [Abstract][Full Text] [Related]
18. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Lee I; Bender E; Kadenbach B Mol Cell Biochem; 2002; 234-235(1-2):63-70. PubMed ID: 12162461 [TBL] [Abstract][Full Text] [Related]
19. Endotoxin-stimulated nitric oxide production inhibits expression of cytochrome c oxidase in ANA-1 murine macrophages. Wei J; Guo H; Kuo PC J Immunol; 2002 May; 168(9):4721-7. PubMed ID: 11971022 [TBL] [Abstract][Full Text] [Related]
20. Additive effects of mitochondrion-targeted cytochrome CYP2E1 and alcohol toxicity on cytochrome c oxidase function and stability of respirosome complexes. Bansal S; Srinivasan S; Anandasadagopan S; Chowdhury AR; Selvaraj V; Kalyanaraman B; Joseph J; Avadhani NG J Biol Chem; 2012 May; 287(19):15284-97. PubMed ID: 22396533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]