These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 18535492)
1. Cryptic chromosomal abnormalities identified in children with congenital heart disease. Richards AA; Santos LJ; Nichols HA; Crider BP; Elder FF; Hauser NS; Zinn AR; Garg V Pediatr Res; 2008 Oct; 64(4):358-63. PubMed ID: 18535492 [TBL] [Abstract][Full Text] [Related]
2. High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. Erdogan F; Larsen LA; Zhang L; Tümer Z; Tommerup N; Chen W; Jacobsen JR; Schubert M; Jurkatis J; Tzschach A; Ropers HH; Ullmann R J Med Genet; 2008 Nov; 45(11):704-9. PubMed ID: 18713793 [TBL] [Abstract][Full Text] [Related]
3. Identification of De Novo and Rare Inherited Copy Number Variants in Children with Syndromic Congenital Heart Defects. Hussein IR; Bader RS; Chaudhary AG; Bassiouni R; Alquaiti M; Ashgan F; Schulten HJ; Al Qahtani MH Pediatr Cardiol; 2018 Jun; 39(5):924-940. PubMed ID: 29541814 [TBL] [Abstract][Full Text] [Related]
4. Detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Yan Y; Wu Q; Zhang L; Wang X; Dan S; Deng D; Sun L; Yao L; Ma Y; Wang L Ultrasound Obstet Gynecol; 2014 Apr; 43(4):404-12. PubMed ID: 24323407 [TBL] [Abstract][Full Text] [Related]
5. [Detection of cryptic copy number variations in a fetus with congenital heart disease by array-based comparative genomic hybridization]. HU P; WANG Y; JI XQ; LIN Y; Li L; ZHOU XY; CHEN J; MA DY; CAO L; Xu Z Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Apr; 28(2):133-6. PubMed ID: 21462121 [TBL] [Abstract][Full Text] [Related]
6. Array comparative genomic hybridization as a clinical diagnostic tool in syndromic and nonsyndromic congenital heart disease. Syrmou A; Tzetis M; Fryssira H; Kosma K; Oikonomakis V; Giannikou K; Makrythanasis P; Kitsiou-Tzeli S; Kanavakis E Pediatr Res; 2013 Jun; 73(6):772-6. PubMed ID: 23481551 [TBL] [Abstract][Full Text] [Related]
7. Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Thienpont B; Mertens L; de Ravel T; Eyskens B; Boshoff D; Maas N; Fryns JP; Gewillig M; Vermeesch JR; Devriendt K Eur Heart J; 2007 Nov; 28(22):2778-84. PubMed ID: 17384091 [TBL] [Abstract][Full Text] [Related]
8. Chromosomal abnormalities in fetuses with congenital heart disease: a meta-analysis. Wang H; Lin X; Lyu G; He S; Dong B; Yang Y Arch Gynecol Obstet; 2023 Sep; 308(3):797-811. PubMed ID: 36609702 [TBL] [Abstract][Full Text] [Related]
9. New trends in chromosomal investigation in children with cardiovascular malformations. Schellberg R; Schwanitz G; Grävinghoff L; Kallenberg R; Trost D; Raff R; Wiebe W Cardiol Young; 2004 Dec; 14(6):622-9. PubMed ID: 15679998 [TBL] [Abstract][Full Text] [Related]
10. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Zhu X; Li J; Ru T; Wang Y; Xu Y; Yang Y; Wu X; Cram DS; Hu Y Prenat Diagn; 2016 Apr; 36(4):321-7. PubMed ID: 26833920 [TBL] [Abstract][Full Text] [Related]
11. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects. Jansen FA; Hoffer MJ; van Velzen CL; Plati SK; Rijlaarsdam ME; Clur SA; Blom NA; Pajkrt E; Bhola SL; Knegt AC; de Boer MA; Haak MC Prenat Diagn; 2016 Feb; 36(2):177-85. PubMed ID: 26716421 [TBL] [Abstract][Full Text] [Related]
12. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. Geng J; Picker J; Zheng Z; Zhang X; Wang J; Hisama F; Brown DW; Mullen MP; Harris D; Stoler J; Seman A; Miller DT; Fu Q; Roberts AE; Shen Y BMC Genomics; 2014 Dec; 15(1):1127. PubMed ID: 25516202 [TBL] [Abstract][Full Text] [Related]
16. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia. Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352 [TBL] [Abstract][Full Text] [Related]
17. Challenges of interpreting copy number variation in syndromic and non-syndromic congenital heart defects. Breckpot J; Thienpont B; Arens Y; Tranchevent LC; Vermeesch JR; Moreau Y; Gewillig M; Devriendt K Cytogenet Genome Res; 2011; 135(3-4):251-9. PubMed ID: 21921585 [TBL] [Abstract][Full Text] [Related]
18. Copy number variants detection by microarray and multiplex ligation-dependent probe amplification in congenital heart diseases. Nagy O; Szakszon K; Biró BO; Mogyorósy G; Nagy D; Nagy B; Balogh I; Ujfalusi A J Biotechnol; 2019 Jun; 299():86-95. PubMed ID: 31054299 [TBL] [Abstract][Full Text] [Related]
19. Cytogenomic Evaluation of Subjects with Syndromic and Nonsyndromic Conotruncal Heart Defects. de Souza KR; Mergener R; Huber J; Campos Pellanda L; Riegel M Biomed Res Int; 2015; 2015():401941. PubMed ID: 26137477 [TBL] [Abstract][Full Text] [Related]
20. The use of comparative genomic hybridization and fluorescent in situ hybridization in postmortem pathology investigation of congenital malformations. Goemaere N; Douben H; Van Opstal D; Wouters C; Tibboel D; de Krijger R; de Klein A Pediatr Dev Pathol; 2010; 13(2):85-94. PubMed ID: 19594201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]