These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake. Daryadel A; Küng CJ; Haykir B; Sabrautzki S; de Angelis MH; Hernando N; Rubio-Aliaga I; Wagner CA Am J Physiol Renal Physiol; 2024 May; 326(5):F792-F801. PubMed ID: 38545651 [TBL] [Abstract][Full Text] [Related]
6. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Wagner CA; Rubio-Aliaga I; Hernando N Pediatr Nephrol; 2019 Apr; 34(4):549-559. PubMed ID: 29275531 [TBL] [Abstract][Full Text] [Related]
7. Does the composition of urinary extracellular vesicles reflect the abundance of renal Na Radvanyi Z; Daryadel A; Pastor-Arroyo EM; Hernando N; Wagner CA Pflugers Arch; 2022 Nov; 474(11):1201-1212. PubMed ID: 36074191 [TBL] [Abstract][Full Text] [Related]
8. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Fujii T; Segawa H; Hanazaki A; Nishiguchi S; Minoshima S; Ohi A; Tominaga R; Sasaki S; Tanifuji K; Koike M; Arima Y; Shiozaki Y; Kaneko I; Ito M; Tatsumi S; Miyamoto KI Clin Exp Nephrol; 2019 Jul; 23(7):898-907. PubMed ID: 30895530 [TBL] [Abstract][Full Text] [Related]
9. Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Ambühl PM; Zajicek HK; Wang H; Puttaparthi K; Levi M Kidney Int; 1998 May; 53(5):1288-98. PubMed ID: 9573544 [TBL] [Abstract][Full Text] [Related]
10. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864 [TBL] [Abstract][Full Text] [Related]
11. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Villa-Bellosta R; Ravera S; Sorribas V; Stange G; Levi M; Murer H; Biber J; Forster IC Am J Physiol Renal Physiol; 2009 Apr; 296(4):F691-9. PubMed ID: 19073637 [TBL] [Abstract][Full Text] [Related]
12. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Gattineni J; Bates C; Twombley K; Dwarakanath V; Robinson ML; Goetz R; Mohammadi M; Baum M Am J Physiol Renal Physiol; 2009 Aug; 297(2):F282-91. PubMed ID: 19515808 [TBL] [Abstract][Full Text] [Related]
13. Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Bacic D; Capuano P; Baum M; Zhang J; Stange G; Biber J; Kaissling B; Moe OW; Wagner CA; Murer H Am J Physiol Renal Physiol; 2005 Apr; 288(4):F740-7. PubMed ID: 15547113 [TBL] [Abstract][Full Text] [Related]
14. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. Webster R; Sheriff S; Faroqui R; Siddiqui F; Hawse JR; Amlal H Am J Physiol Renal Physiol; 2016 Aug; 311(2):F249-59. PubMed ID: 27194721 [TBL] [Abstract][Full Text] [Related]
15. The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Bourgeois S; Capuano P; Stange G; Mühlemann R; Murer H; Biber J; Wagner CA Pflugers Arch; 2013 Nov; 465(11):1557-72. PubMed ID: 23708836 [TBL] [Abstract][Full Text] [Related]
16. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Villa-Bellosta R; Sorribas V Pflugers Arch; 2010 Feb; 459(3):499-508. PubMed ID: 19841935 [TBL] [Abstract][Full Text] [Related]
17. Proximal tubular handling of phosphate: A molecular perspective. Forster IC; Hernando N; Biber J; Murer H Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105 [TBL] [Abstract][Full Text] [Related]
18. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532 [TBL] [Abstract][Full Text] [Related]
19. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. Küng CJ; Haykir B; Schnitzbauer U; Egli-Spichtig D; Hernando N; Wagner CA Am J Physiol Renal Physiol; 2021 Dec; 321(6):F785-F798. PubMed ID: 34719948 [TBL] [Abstract][Full Text] [Related]
20. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]