These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 18536042)
1. An in vitro evaluation on the percutaneous sites of MAO-treated implants. Wang X; Chen F; Wang G; Ma W; Zhao Y J Biomed Mater Res B Appl Biomater; 2008 Nov; 87(2):508-15. PubMed ID: 18536042 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo study of a sodium chloride impregnated microarc oxidation-treated titanium implant surface. Wang X; Wang G; Shan S; Hui G; Guo T; Liu G; Zhao Y J Mater Chem B; 2014 Jun; 2(22):3549-3556. PubMed ID: 32261474 [TBL] [Abstract][Full Text] [Related]
3. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure. Zhou R; Wei D; Cheng S; Feng W; Du Q; Yang H; Li B; Wang Y; Jia D; Zhou Y ACS Appl Mater Interfaces; 2014 Apr; 6(7):4797-811. PubMed ID: 24579697 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. Li G; Cao H; Zhang W; Ding X; Yang G; Qiao Y; Liu X; Jiang X ACS Appl Mater Interfaces; 2016 Feb; 8(6):3840-52. PubMed ID: 26789077 [TBL] [Abstract][Full Text] [Related]
5. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Bai Y; Zhou R; Cao J; Wei D; Du Q; Li B; Wang Y; Jia D; Zhou Y Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():908-917. PubMed ID: 28482606 [TBL] [Abstract][Full Text] [Related]
6. Early osseointegration of implants with cortex-like TiO Zhou HZ; Li YD; Liu L; Chen XD; Wang WQ; Ma GW; Su YC; Qi M; Shi B J Huazhong Univ Sci Technolog Med Sci; 2017 Feb; 37(1):122-130. PubMed ID: 28224420 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. Li LH; Kim HW; Lee SH; Kong YM; Kim HE J Biomed Mater Res A; 2005 Apr; 73(1):48-54. PubMed ID: 15714507 [TBL] [Abstract][Full Text] [Related]
9. Carboxymethyl Dextran-Based Nanomicelle Coatings on Microarc Oxidized Titanium Surface for Percutaneous Implants: Drug Release, Antibacterial Properties, and Biocompatibility. Ye W; Zhou M; Zhang L; Yu J; Fan J; Wei H Biomed Res Int; 2022; 2022():9225647. PubMed ID: 35865662 [TBL] [Abstract][Full Text] [Related]
10. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells. Wang Z; Wu G; Feng Z; Bai S; Dong Y; Wu G; Zhao Y Int J Nanomedicine; 2015; 10():6675-87. PubMed ID: 26604744 [TBL] [Abstract][Full Text] [Related]
11. Initial osteoblast functions on Ti-5Zr-3Sn-5Mo-15Nb titanium alloy surfaces modified by microarc oxidation. Zhao L; Wei Y; Li J; Han Y; Ye R; Zhang Y J Biomed Mater Res A; 2010 Feb; 92(2):432-40. PubMed ID: 19191311 [TBL] [Abstract][Full Text] [Related]
12. [Effect of different wave-length ultraviolet light-treated micro-arc oxidation titanium surfaces on the physicochemical properties and bioactivity in vitro]. Gao Y; Zhou L; Jiang Y; Guo ZH; Lu HB; Li SB Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Jun; 47(6):359-63. PubMed ID: 22932487 [TBL] [Abstract][Full Text] [Related]
13. Accelerated and enhanced osteointegration of MAO-treated implants: histological and histomorphometric evaluation in a rabbit model. Li X; Xu H; Zhao B; Jiang S Int J Oral Sci; 2018 Mar; 10(2):11. PubMed ID: 29563493 [TBL] [Abstract][Full Text] [Related]
14. Osteoblast cell adhesion and viability on nanostructured surfaces of porous titanium oxide layer. Song YH; An JH; Seo YW; Moon WJ; Park YJ; Song HJ J Nanosci Nanotechnol; 2014 Aug; 14(8):5682-7. PubMed ID: 25935989 [TBL] [Abstract][Full Text] [Related]
15. Hydroxyapatite-TiO2 hybrid coating on Ti implants. Lee SH; Kim HW; Lee EJ; Li LH; Kim HE J Biomater Appl; 2006 Jan; 20(3):195-208. PubMed ID: 16364961 [TBL] [Abstract][Full Text] [Related]
16. Bioactivity study of the titanium plates treated with microarc oxidation and alkali. Wang X; Cao Y; Yang L; Liu Z J Nanosci Nanotechnol; 2011 Nov; 11(11):9650-5. PubMed ID: 22413264 [TBL] [Abstract][Full Text] [Related]
17. Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Sul YT; Johansson CB; Kang Y; Jeon DG; Albrektsson T Clin Implant Dent Relat Res; 2002; 4(2):78-87. PubMed ID: 12121607 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effects of surface chemistry and topologic structure from modified microarc oxidation coatings on Ti implants for improving osseointegration. Zhou R; Wei D; Cao J; Feng W; Cheng S; Du Q; Li B; Wang Y; Jia D; Zhou Y ACS Appl Mater Interfaces; 2015 Apr; 7(16):8932-41. PubMed ID: 25860058 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of biofilm formation on iodine-supported titanium implants. Inoue D; Kabata T; Ohtani K; Kajino Y; Shirai T; Tsuchiya H Int Orthop; 2017 Jun; 41(6):1093-1099. PubMed ID: 28386730 [TBL] [Abstract][Full Text] [Related]