These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18536273)

  • 1. The prospects of the use of resorbable polyesters for designing safe pesticides.
    Volova TG; Voinova ON; Kalacheva GS; Grodnitskaya ID
    Dokl Biol Sci; 2008; 419():100-3. PubMed ID: 18536273
    [No Abstract]   [Full Text] [Related]  

  • 2. [Microbial polymers as a degradable carrier for pesticide delivery].
    Voĭnova ON; Kalacheva GS; Grodnitskaia ID; Volova TG
    Prikl Biokhim Mikrobiol; 2009; 45(4):427-31. PubMed ID: 19764611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the pesticide capture efficiency of potential passive dosimeter materials.
    Kirchner LM; Taylor RA; Downer RA; Hall FR
    Bull Environ Contam Toxicol; 1996 Dec; 57(6):938-45. PubMed ID: 8875842
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of the application of sewage sludge on the degradation of pesticides in the soil.
    Sánchez ME; Estrada IB; Martínez O; Martín-Villacorta J; Aller A; Morán A
    Chemosphere; 2004 Nov; 57(7):673-9. PubMed ID: 15488930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control.
    Liu X; He B; Xu Z; Yin M; Yang W; Zhang H; Cao J; Shen J
    Nanoscale; 2015 Jan; 7(2):445-9. PubMed ID: 25429649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The biodegradation of poly-beta-hydroxybutyrate (PHB) by a model soil community: the effect of cultivation conditions on the degradation rate and the physicochemical characteristics of PHB].
    Bonartseva GA; Myshkina VL; Nikolaeva DA; Rebrov AV; Gerasin VA; Makhina TK
    Mikrobiologiia; 2002; 71(2):258-63. PubMed ID: 12024829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites - a review of the clinical and metabolic impact.
    Vacaras S; Baciut M; Lucaciu O; Dinu C; Baciut G; Crisan L; Hedesiu M; Crisan B; Onisor F; Armencea G; Mitre I; Barbur I; Kretschmer W; Bran S
    Drug Metab Rev; 2019 Nov; 51(4):570-588. PubMed ID: 31296117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical transformations of pesticides by soil micro-organisms.
    Evans WC
    Biochem J; 1968 Sep; 109(2):3P. PubMed ID: 5679379
    [No Abstract]   [Full Text] [Related]  

  • 9. The microbial breakdown of pesticides.
    Cripps RE
    Soc Appl Bacteriol Symp Ser; 1971; 1():255-66. PubMed ID: 5005567
    [No Abstract]   [Full Text] [Related]  

  • 10. [Development of corrosion-dangerous microflora of soil under the influence of some pesticides].
    Smykun NV
    Mikrobiol Z; 2008; 70(6):74-87. PubMed ID: 19351052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics.
    Suyama T; Tokiwa Y; Ouichanpagdee P; Kanagawa T; Kamagata Y
    Appl Environ Microbiol; 1998 Dec; 64(12):5008-11. PubMed ID: 9835597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor.
    Fragoeiro S; Magan N
    Environ Microbiol; 2005 Mar; 7(3):348-55. PubMed ID: 15683395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Impacts on Soil Microbial Communities and Potential Implications for the Biodegradation of Turfgrass Pesticides.
    Reedich LM; Millican MD; Koch PL
    J Environ Qual; 2017 May; 46(3):490-497. PubMed ID: 28724094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil microbial effects on the stereoselective mineralization, extractable residue, bound residue, and metabolism of a novel chiral cis neonicotinoid, paichongding.
    Fu Q; Wang Y; Zhang J; Zhang H; Bai C; Li J; Wang W; Wang H; Ye Q; Li Z
    J Agric Food Chem; 2013 Aug; 61(32):7689-95. PubMed ID: 23815745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective Degradation and Molecular Ecological Mechanism of Chiral Pesticides Beta-Cypermethrin in Soils with Different pH Values.
    Yang ZH; Ji GD
    Environ Sci Technol; 2015 Dec; 49(24):14166-75. PubMed ID: 26560831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy of two thermophiles enables decomposition of poly-epsilon-caprolactone under composting conditions.
    Nakasaki K; Matsuura H; Tanaka H; Sakai T
    FEMS Microbiol Ecol; 2006 Dec; 58(3):373-83. PubMed ID: 17117982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical transformation of pesticides by soil fungi.
    Bollag JM
    CRC Crit Rev Microbiol; 1972 Nov; 2(1):35-58. PubMed ID: 4567449
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism.
    Zou X; Xiao X; Zhou H; Chen F; Zeng J; Wang W; Feng G; Huang X
    J Hazard Mater; 2018 Oct; 359():365-372. PubMed ID: 30048951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A model study of pesticide biodegradation in soil].
    Bieganska J
    Izv Akad Nauk Ser Biol; 2007; (1):91-101. PubMed ID: 17352205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.