These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18536426)

  • 41. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane.
    Sokolov VS; Gavrilchik AN; Kulagina AO; Meshkov IN; Pohl P; Gorbunova YG
    J Photochem Photobiol B; 2016 Aug; 161():162-9. PubMed ID: 27236238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts.
    Grandy TH; Greenfield SA; Devonshire IM
    J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects.
    Clarke RJ; Kane DJ
    Biochim Biophys Acta; 1997 Jan; 1323(2):223-39. PubMed ID: 9042345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of new, long-wavelength, voltage-sensitive dyes in the heart.
    Salama G; Choi BR; Azour G; Lavasani M; Tumbev V; Salzberg BM; Patrick MJ; Ernst LA; Waggoner AS
    J Membr Biol; 2005 Nov; 208(2):125-40. PubMed ID: 16645742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New near-infrared optical probes of cardiac electrical activity.
    Matiukas A; Mitrea BG; Pertsov AM; Wuskell JP; Wei MD; Watras J; Millard AC; Loew LM
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2633-43. PubMed ID: 16399869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A compact, multidimensional spectrofluorometer exploiting supercontinuum generation.
    Manning HB; Kennedy GT; Owen DM; Grant DM; Magee AI; Neil MA; Itoh Y; Dunsby C; French PM
    J Biophotonics; 2008 Dec; 1(6):494-505. PubMed ID: 19343675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes.
    Klymchenko AS; Duportail G; Mély Y; Demchenko AP
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11219-24. PubMed ID: 12972636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra.
    Benda A; Kapusta P; Hof M; Gaus K
    Opt Express; 2014 Feb; 22(3):2973-88. PubMed ID: 24663589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intramural multisite recording of transmembrane potential in the heart.
    Hooks DA; LeGrice IJ; Harvey JD; Smaill BH
    Biophys J; 2001 Nov; 81(5):2671-80. PubMed ID: 11606280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of a charged-coupled-device-based optical mapping system for the study of cardiac arrhythmias.
    Tang D; Li Y; Wong J; Po S; Patterson E; Chen WR; Jackman W; Liu H
    J Biomed Opt; 2005; 10(2):024009. PubMed ID: 15910083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface.
    Osakai T; Yoshimura T; Kaneko D; Nagatani H; Son SH; Yamagishi Y; Yamada K
    Anal Bioanal Chem; 2012 Aug; 404(3):785-92. PubMed ID: 22744747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes.
    Xu C; Loew LM
    Biophys J; 2003 Apr; 84(4):2768-80. PubMed ID: 12668484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system.
    Habib-E-Rasul Mullah S; Komuro R; Yan P; Hayashi S; Inaji M; Momose-Sato Y; Loew LM; Sato K
    J Membr Biol; 2013 Sep; 246(9):679-88. PubMed ID: 23975337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tethered Bichromophoric Fluorophore Quencher Voltage Sensitive Dyes.
    Yan P; Acker CD; Loew LM
    ACS Sens; 2018 Dec; 3(12):2621-2628. PubMed ID: 30474375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface.
    Osakai T; Sawada J; Nagatani H
    Anal Bioanal Chem; 2009 Oct; 395(4):1055-61. PubMed ID: 19588129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of electric field and fiber structure in cardiac electric stimulation.
    Knisley SB; Trayanova N; Aguel F
    Biophys J; 1999 Sep; 77(3):1404-17. PubMed ID: 10465752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS.
    Manno C; Figueroa L; Fitts R; Ríos E
    J Gen Physiol; 2013 Mar; 141(3):371-87. PubMed ID: 23440278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane dipole potential as measured by ratiometric 3-hydroxyflavone fluorescence probes: accounting for hydration effects.
    M'Baye G; Shynkar VV; Klymchenko AS; Mély Y; Duportail G
    J Fluoresc; 2006 Jan; 16(1):35-42. PubMed ID: 16400505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-wavelength ratiometric fluorescence measurements of membrane potential.
    Montana V; Farkas DL; Loew LM
    Biochemistry; 1989 May; 28(11):4536-9. PubMed ID: 2765500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase shifting prior to spatial filtering enhances optical recordings of cardiac action potential propagation.
    Sung D; Cosman JSJP ; Mills R; McCulloch AD
    Ann Biomed Eng; 2001 Oct; 29(10):854-61. PubMed ID: 11764316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.