These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18536426)

  • 61. Probing membrane potential with nonlinear optics.
    Bouevitch O; Lewis A; Pinevsky I; Wuskell JP; Loew LM
    Biophys J; 1993 Aug; 65(2):672-9. PubMed ID: 8218895
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative.
    Ng DN; Fromherz P
    ACS Chem Biol; 2011 May; 6(5):444-51. PubMed ID: 21235276
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge.
    Kuhn B; Fromherz P; Denk W
    Biophys J; 2004 Jul; 87(1):631-9. PubMed ID: 15240496
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
    Bachtel AD; Gray RA; Stohlman JM; Bourgeois EB; Pollard AE; Rogers JM
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2120-6. PubMed ID: 21536528
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Intravital multiphoton photoconversion with a cell membrane dye.
    Turcotte R; Wu JW; Lin CP
    J Biophotonics; 2017 Feb; 10(2):206-210. PubMed ID: 27433967
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can di-4-ANEPPDHQ reveal the structural differences between nanodiscs and liposomes?
    Chmielińska A; Stepien P; Bonarek P; Girych M; Enkavi G; Rog T; Dziedzicka-Wasylewska M; Polit A
    Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183649. PubMed ID: 33991503
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spectra, membrane binding, and potentiometric responses of new charge shift probes.
    Fluhler E; Burnham VG; Loew LM
    Biochemistry; 1985 Oct; 24(21):5749-55. PubMed ID: 4084490
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes.
    Bullen A; Saggau P
    Biophys J; 1999 Apr; 76(4):2272-87. PubMed ID: 10096922
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dipolar rearrangement during micellization explored using a potential-sensitive fluorescent probe.
    Sarkar P; Chattopadhyay A
    Chem Phys Lipids; 2015 Oct; 191():91-5. PubMed ID: 26327331
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fluorescence switching of imidazo[1,5-a]pyridinium ions: pH-sensors with dual emission pathways.
    Hutt JT; Jo J; Olasz A; Chen CH; Lee D; Aron ZD
    Org Lett; 2012 Jun; 14(12):3162-5. PubMed ID: 22671708
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pyridinium-based symmetrical diamides as chemosensors in visual sensing of citrate through indicator displacement assay (IDA) and gel formation.
    Ghosh K; Ranjan Sarkar A
    Org Biomol Chem; 2011 Oct; 9(19):6551-8. PubMed ID: 21829838
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ratiometric Fluorescence Live Imaging Analysis of Membrane Lipid Order in Arabidopsis Mitotic Cells Using a Lipid Order-Sensitive Probe.
    Gerbeau-Pissot P; Der C; Grebe M; Stanislas T
    Methods Mol Biol; 2016; 1370():227-39. PubMed ID: 26659966
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations.
    Loew LM; Cohen LB; Dix J; Fluhler EN; Montana V; Salama G; Wu JY
    J Membr Biol; 1992 Oct; 130(1):1-10. PubMed ID: 1469705
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optical mapping at increased illumination intensities.
    Kanaporis G; Martišienė I; Jurevičius J; Vosyliūtė R; Navalinskas A; Treinys R; Matiukas A; Pertsov AM
    J Biomed Opt; 2012 Sep; 17(9):96007-1. PubMed ID: 23085908
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical imaging and functional characterization of the transverse tubular system of mammalian muscle fibers using the potentiometric indicator di-8-ANEPPS.
    DiFranco M; Capote J; Vergara JL
    J Membr Biol; 2005 Nov; 208(2):141-53. PubMed ID: 16645743
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ.
    Fisher JA; Barchi JR; Welle CG; Kim GH; Kosterin P; Obaid AL; Yodh AG; Contreras D; Salzberg BM
    J Neurophysiol; 2008 Mar; 99(3):1545-53. PubMed ID: 18171710
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluorescence correlation spectroscopy: principles and applications.
    Bacia K; Haustein E; Schwille P
    Cold Spring Harb Protoc; 2014 Jul; 2014(7):709-25. PubMed ID: 24987147
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluorescent styryl dyes applied as fast optical probes of cardiac action potential.
    Müller W; Windisch H; Tritthart HA
    Eur Biophys J; 1986; 14(2):103-11. PubMed ID: 3816701
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Visualizing excitation waves inside cardiac muscle using transillumination.
    Baxter WT; Mironov SF; Zaitsev AV; Jalife J; Pertsov AM
    Biophys J; 2001 Jan; 80(1):516-30. PubMed ID: 11159422
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer.
    Loew LM; Simpson LL
    Biophys J; 1981 Jun; 34(3):353-65. PubMed ID: 7248466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.