These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18536513)

  • 1. Estimation of oxygen cost of internal power during cycling exercise with changing pedal rate.
    Tokui M; Hirakoba K
    J Physiol Anthropol; 2008 May; 27(3):133-8. PubMed ID: 18536513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of internal power on muscular efficiency during cycling exercise.
    Tokui M; Hirakoba K
    Eur J Appl Physiol; 2007 Nov; 101(5):565-70. PubMed ID: 17674027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance.
    Zoladz JA; Duda K; Majerczak J
    Physiol Res; 1998; 47(6):427-38. PubMed ID: 10453750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human muscle power generating capability during cycling at different pedalling rates.
    Zoladz JA; Rademaker AC; Sargeant AJ
    Exp Physiol; 2000 Jan; 85(1):117-24. PubMed ID: 10662901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pedal rate on cardiorespiratory responses during continuous exercise.
    Hagan RD; Weis SE; Raven PB
    Med Sci Sports Exerc; 1992 Oct; 24(10):1088-95. PubMed ID: 1435156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 2 weeks of low-intensity cycle training with different pedaling rates on the work rate at lactate threshold.
    Hirano M; Shindo M; Mishima S; Morimura K; Higuchi Y; Yamada Y; Higaki Y; Kiyonaga A
    Eur J Appl Physiol; 2015 May; 115(5):1005-13. PubMed ID: 25542416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    J Appl Physiol (1985); 1996 Oct; 81(4):1642-50. PubMed ID: 8904581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise.
    Pringle JS; Doust JH; Carter H; Tolfrey K; Jones AM
    J Appl Physiol (1985); 2003 Apr; 94(4):1501-7. PubMed ID: 12496138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling.
    Farina D; Macaluso A; Ferguson RA; De Vito G
    J Appl Physiol (1985); 2004 Dec; 97(6):2035-41. PubMed ID: 15286050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the base-line determination on work efficiency during submaximal cycling.
    Hintzy-Cloutier F; Zameziati K; Belli A
    J Sports Med Phys Fitness; 2003 Mar; 43(1):51-6. PubMed ID: 12629462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen cost of internal work during cycling.
    Francescato MP; Girardis M; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):51-7. PubMed ID: 8789570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of metabolic cost during submaximal cycling.
    McDaniel J; Durstine JL; Hand GA; Martin JC
    J Appl Physiol (1985); 2002 Sep; 93(3):823-8. PubMed ID: 12183473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling.
    Hansen EA; Jensen K; Hallén J; Rasmussen J; Pedersen PK
    J Physiol Anthropol; 2009 Nov; 28(6):261-7. PubMed ID: 20009373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rate of decrease in power output in decrement-load exercise on oxygen uptake.
    Yano T; Yunoki T; Matsuura R; Arimitsu T; Kimura T
    Physiol Res; 2007; 56(6):715-719. PubMed ID: 17087605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength training reduces freely chosen pedal rate during submaximal cycling.
    Hansen EA; Raastad T; Hallén J
    Eur J Appl Physiol; 2007 Nov; 101(4):419-26. PubMed ID: 17638007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic responses to increasing cycle cadence in 11-year old boys: role of the skeletal muscle pump.
    Rowland T; Lisowski R
    Int J Sports Med; 2001 Aug; 22(6):405-9. PubMed ID: 11531031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.