These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18536809)

  • 1. New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic.
    Hu S; Cao X; Song Y; Li C; Xie P; Jiang L
    Chem Commun (Camb); 2008 May; (17):2025-7. PubMed ID: 18536809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable-temperature Fourier transform infrared spectroscopic investigations of poly(3-hydroxyalkanoates) and perturbation-correlation moving-window two-dimensional correlation analysis. Part II: Study of poly(epsilon-caprolactone) homopolymer and a poly(3-hydroxybutyrate)-poly(epsilon-caprolactone) blend.
    Unger M; Morita S; Sato H; Ozaki Y; Siesler HW
    Appl Spectrosc; 2009 Sep; 63(9):1034-40. PubMed ID: 19796486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass.
    Wang Z; Zhu L; Li W; Liu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4808-14. PubMed ID: 23627251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
    Balu B; Breedveld V; Hess DW
    Langmuir; 2008 May; 24(9):4785-90. PubMed ID: 18315020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers.
    Yang Y; Hua C; Dong CM
    Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly porous fibers by electrospinning into a cryogenic liquid.
    McCann JT; Marquez M; Xia Y
    J Am Chem Soc; 2006 Feb; 128(5):1436-7. PubMed ID: 16448099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous materials show superhydrophobic to superhydrophilic switching.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC; Roach P
    Chem Commun (Camb); 2005 Jul; (25):3135-7. PubMed ID: 15968349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces.
    Borras A; Barranco A; González-Elipe AR
    Langmuir; 2008 Aug; 24(15):8021-6. PubMed ID: 18576610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel.
    Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic surface fabricated by bulk photografting of acrylic acid onto high-density polyethylene.
    Han J; Wang X; Wang H
    J Colloid Interface Sci; 2008 Oct; 326(2):360-5. PubMed ID: 18653198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A superhydrophobic surface fabricated by an electrostatic process.
    Yoon H; Park JH; Kim GH
    Macromol Rapid Commun; 2010 Aug; 31(16):1435-9. PubMed ID: 21567547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled honokiol-loaded micelles based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer.
    Wei X; Gong C; Shi S; Fu S; Men K; Zeng S; Zheng X; Gou M; Chen L; Qiu L; Qian Z
    Int J Pharm; 2009 Mar; 369(1-2):170-5. PubMed ID: 19028556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic conductive carbon nanotube coatings for steel.
    Sethi S; Dhinojwala A
    Langmuir; 2009 Apr; 25(8):4311-3. PubMed ID: 19281157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Superhydrophilic Aluminum Alloy Properties in Contact with Water during Cyclic Variation in Temperature.
    Domantovsky AG; Chulkova EV; Emelyanenko KA; Maslakov KI; Emelyanenko AM; Boinovich LB
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.