These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18536843)

  • 1. Mechanical properties of 18 different AO bone plates and the clamp-rod internal fixation system tested on a gap model construct.
    Zahn K; Frei R; Wunderle D; Linke B; Schwieger K; Guerguiev B; Pohler O; Matis U
    Vet Comp Orthop Traumatol; 2008; 21(3):185-94. PubMed ID: 18536843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biomechanical comparison of 3.5 mm LC-DCP/intramedullary rod and 5 mm clamp-rod internal fixator (CRIF)/intramedullary rod fixation in a canine femoral gap model.
    Bonin GA; Baker ST; Davis CA; Bergerson CM; Hildebrandt AA; Hulse DA; Kerwin SC; Moreno MR; Saunders WB
    Vet Surg; 2014 Oct; 43(7):860-8. PubMed ID: 24484218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of stiffness and strength of 4 different implants available for equine fracture treatment: a study on a 20 degrees oblique long-bone fracture model using a bone substitute.
    Florin M; Arzdorf M; Linke B; Auer JA
    Vet Surg; 2005; 34(3):231-8. PubMed ID: 16115079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro biomechanical comparison between prototype tapered shaft cortical bone screws and AO cortical bone screws for an equine metacarpal dynamic compression plate fixation of osteotomized equine third metacarpal bones.
    Sod GA; Hubert JD; Martin GS; Gill MS
    Vet Surg; 2006 Oct; 35(7):634-42. PubMed ID: 17026548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure mode and bending moment of canine pancarpal arthrodesis constructs stabilized with two different implant systems.
    Wininger FA; Kapatkin AS; Radin A; Shofer FS; Smith GK
    Vet Surg; 2007 Dec; 36(8):724-8. PubMed ID: 18067612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biomechanical evaluation and comparison of a new prototype locking plate and a limited-contact self compression plate for equine fracture repair.
    Quinteros DD; García-López JM; Abuja GA; Tarkanian M; Maranda LS; Bubeck K; Kowaleski MP
    Vet Comp Orthop Traumatol; 2012; 25(4):273-80. PubMed ID: 22695636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical testing of 3.5 mm locking and non-locking bone plates.
    DeTora M; Kraus K
    Vet Comp Orthop Traumatol; 2008; 21(4):318-22. PubMed ID: 18704237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.
    Durham ME; Sod GA; Riggs LM; Mitchell CF
    Vet Surg; 2015 Feb; 44(2):206-13. PubMed ID: 25132492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of screw placement on plate strain in 3.5 mm dynamic compression plates and limited-contact dynamic compression plates.
    Maxwell M; Horstman CL; Crawford RL; Vaughn T; Elder S; McLaughlin R
    Vet Comp Orthop Traumatol; 2009; 22(2):125-31. PubMed ID: 19290393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of double locking plate constructs with single non-locking plate constructs in single cycle to failure in bending and torsion.
    Hutcheson KD; Butler JR; Elder SE
    Vet Comp Orthop Traumatol; 2015; 28(4):234-9. PubMed ID: 26037263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of conventional compression plates and locking compression plates using cantilever bending in an ilial fracture model.
    Bruce CW; Gibson TW; Runciman RJ
    Vet Comp Orthop Traumatol; 2014; 27(6):430-5. PubMed ID: 25345445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of double dynamic compression plating versus two configurations of an internal veterinary fixation device: Results of in vitro mechanical testing using a bone substitute.
    Haerdi-Landerer C; Steiner A; Linke B; Wahl D; Schneider E; Hehli M; Frei R; Auer JA
    Vet Surg; 2002; 31(6):582-8. PubMed ID: 12415528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the mechanical behaviors of semicontoured, locking plate-rod fixation and anatomically contoured, conventional plate-rod fixation applied to experimentally induced gap fractures in canine femora.
    Goh CS; Santoni BG; Puttlitz CM; Palmer RH
    Am J Vet Res; 2009 Jan; 70(1):23-9. PubMed ID: 19119945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture.
    Demner D; Garcia TC; Serdy MG; Hayashi K; Nir BA; Stover SM
    Vet Comp Orthop Traumatol; 2014; 27(6):422-9. PubMed ID: 25327936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biomechanical comparison of limited contat dynamic compression plate and locking compression plate.
    Aguila AZ; Manos JM; Orlansky AS; Todhunter RJ; Trotter EJ; Van der Meulen MC
    Vet Comp Orthop Traumatol; 2005; 18(4):220-6. PubMed ID: 16594390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses.
    Radcliffe RM; Lopez MJ; Turner TA; Watkins JP; Radcliffe CH; Markel MD
    Vet Surg; 2001; 30(2):179-90. PubMed ID: 11230773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model.
    Niederhäuser SK; Tepic S; Weber UT
    Am J Vet Res; 2015 May; 76(5):402-10. PubMed ID: 25909372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial locking compression plate and two abaxial transarticular cortical screws versus an axial dynamic compression plate and two abaxial transarticular cortical screws.
    Sod GA; Riggs LM; Mitchell CF; Martin GS
    Vet Surg; 2011 Jul; 40(5):571-8. PubMed ID: 21521241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of bending and twisting on the stiffness and strength of the 3.5 SOP implant.
    Ness MG
    Vet Comp Orthop Traumatol; 2009; 22(2):132-6. PubMed ID: 19290394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo cyclic mechanical behaviour of 2.4 mm locking plates compared with 2.4 mm limited contact plates in a cadaveric diaphyseal gap model.
    Irubetagoyena I; Verset M; Palierne S; Swider P; Autefage A
    Vet Comp Orthop Traumatol; 2013; 26(6):479-88. PubMed ID: 24080774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.