These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18537050)

  • 1. Water quality improvement through macrophytes--a review.
    Dhote S; Dixit S
    Environ Monit Assess; 2009 May; 152(1-4):149-53. PubMed ID: 18537050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents.
    Srivastava V; Zare EN; Makvandi P; Zheng XQ; Iftekhar S; Wu A; Padil VVT; Mokhtari B; Varma RS; Tay FR; Sillanpaa M
    Chemosphere; 2020 Nov; 258():127324. PubMed ID: 32544812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations.
    Ramesh B; Saravanan A; Senthil Kumar P; Yaashikaa PR; Thamarai P; Shaji A; Rangasamy G
    Environ Pollut; 2023 Jun; 327():121572. PubMed ID: 37028793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.
    Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I
    J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic and terrestrial plant species with potential to remove heavy metals from storm-water.
    Fritioff A; Greger M
    Int J Phytoremediation; 2003; 5(3):211-24. PubMed ID: 14750429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotic Strategies for Toxic Heavy Metal Decontamination.
    Mishra RK; Sharma V
    Recent Pat Biotechnol; 2017; 11(3):218-228. PubMed ID: 28413994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes.
    Das S; Das S; Ghangrekar MM
    J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland.
    Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 1996 Dec; 35(3):242-7. PubMed ID: 9007000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth.
    el-Gendy AS
    Int J Phytoremediation; 2008; 10(1):14-30. PubMed ID: 18709929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-waste disposal effects on the aquatic environment: Accra, Ghana.
    Huang J; Nkrumah PN; Anim DO; Mensah E
    Rev Environ Contam Toxicol; 2014; 229():19-34. PubMed ID: 24515808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Public health benefits of using algae for simultaneous multiple metal extraction from waters.
    Pascucci PR; Kowalak AD
    Rev Environ Health; 1996; 11(4):205-11. PubMed ID: 9085436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.
    Mishra VK; Tripathi BD
    Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals from water sources in the developing world using low-cost materials: A review.
    Joseph L; Jun BM; Flora JRV; Park CM; Yoon Y
    Chemosphere; 2019 Aug; 229():142-159. PubMed ID: 31078029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clay based nanocomposites for removal of heavy metals from water: A review.
    Yadav VB; Gadi R; Kalra S
    J Environ Manage; 2019 Feb; 232():803-817. PubMed ID: 30529868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.