These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 18537134)
21. Activity blockade does not prevent the construction of olfactory glomeruli in the moth Manduca sexta. Oland LA; Pott WM; Bukhman G; Sun XJ; Tolbert LP Int J Dev Neurosci; 1996 Nov; 14(7-8):983-96. PubMed ID: 9010740 [TBL] [Abstract][Full Text] [Related]
22. Immunolocalization of synaptotagmin for the study of synapses in the developing antennal lobe of Manduca sexta. Dubuque SH; Schachtner J; Nighorn AJ; Menon KP; Zinn K; Tolbert LP J Comp Neurol; 2001 Dec; 441(4):277-87. PubMed ID: 11745650 [TBL] [Abstract][Full Text] [Related]
23. Patterns of glial proliferation during formation of olfactory glomeruli in an insect. Oland LA; Tolbert LP Glia; 1989; 2(1):10-24. PubMed ID: 2523336 [TBL] [Abstract][Full Text] [Related]
24. Fibroblast growth factor signaling instructs ensheathing glia wrapping of Wu B; Li J; Chou YH; Luginbuhl D; Luo L Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7505-7512. PubMed ID: 28674010 [TBL] [Abstract][Full Text] [Related]
25. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. Gibson NJ; Tolbert LP; Oland LA PLoS One; 2012; 7(4):e33828. PubMed ID: 22493675 [TBL] [Abstract][Full Text] [Related]
26. Spatiotemporal pattern of expression of tenascin-like molecules in a developing insect olfactory system. Krull CE; Morton DB; Faissner A; Schachner M; Tolbert LP J Neurobiol; 1994 May; 25(5):515-34. PubMed ID: 7520933 [TBL] [Abstract][Full Text] [Related]
27. Afferent axons from the antenna influence the number and placement of intrinsic synapses in the antennal lobes of Manduca sexta. Tolbert LP Synapse; 1989; 3(1):83-95. PubMed ID: 2919370 [TBL] [Abstract][Full Text] [Related]
28. Preparation of primary cultures and acute slices of the nervous system of the moth Manduca sexta. Oland LA; Müller T; Kettenmann H; Hayashi J J Neurosci Methods; 1996 Oct; 69(1):103-12. PubMed ID: 8912940 [TBL] [Abstract][Full Text] [Related]
29. In vitro analyses of interactions between olfactory receptor growth cones and glial cells that mediate axon sorting and glomerulus formation. Tucker ES; Oland LA; Tolbert LP J Comp Neurol; 2004 May; 472(4):478-95. PubMed ID: 15065121 [TBL] [Abstract][Full Text] [Related]
30. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta. Lohr C; Bergstein S; Hirnet D Cell Tissue Res; 2007 Jan; 327(1):189-97. PubMed ID: 16896952 [TBL] [Abstract][Full Text] [Related]
31. Development of a glial network in the olfactory nerve: role of calcium and neuronal activity. Koussa MA; Tolbert LP; Oland LA Neuron Glia Biol; 2010 Nov; 6(4):245-61. PubMed ID: 21933469 [TBL] [Abstract][Full Text] [Related]
32. Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study. Sun XJ; Tolbert LP; Hildebrand JG J Comp Neurol; 1993 Dec; 338(1):5-16. PubMed ID: 8300899 [TBL] [Abstract][Full Text] [Related]
33. Normal glomerular organization of the antennal lobes is not necessary for odor-modulated flight in female moths. Willis MA; Butler MA; Tolbert LP J Comp Physiol A; 1995 Feb; 176(2):205-16. PubMed ID: 7884684 [TBL] [Abstract][Full Text] [Related]
34. Targeted ingrowth and glial relationships of olfactory receptor axons in the primary olfactory pathway of an insect. Oland LA; Pott WM; Higgins MR; Tolbert LP J Comp Neurol; 1998 Aug; 398(1):119-38. PubMed ID: 9703031 [TBL] [Abstract][Full Text] [Related]
35. Development of the labial pit organ glomerulus in the antennal lobe of the moth Manduca sexta: the role of afferent projections in the formation of identifiable olfactory glomeruli. Kent KS; Oland LA; Hildebrand JG J Neurobiol; 1999 Jul; 40(1):28-44. PubMed ID: 10398069 [TBL] [Abstract][Full Text] [Related]
36. Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe. Jindal DA; Leier HC; Salazar G; Foden AJ; Seitz EA; Wilkov AJ; Coutinho-Budd JC; Broihier HT Front Cell Neurosci; 2023; 17():1166199. PubMed ID: 37333889 [TBL] [Abstract][Full Text] [Related]
37. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433 [TBL] [Abstract][Full Text] [Related]
38. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Gao Q; Yuan B; Chess A Nat Neurosci; 2000 Aug; 3(8):780-5. PubMed ID: 10903570 [TBL] [Abstract][Full Text] [Related]
39. In vitro analyses of neurite outgrowth indicate a potential role for tenascin-like molecules in the development of insect olfactory glomeruli. Krull CE; Oland LA; Faissner A; Schachner M; Tolbert LP J Neurobiol; 1994 Aug; 25(8):989-1004. PubMed ID: 7525872 [TBL] [Abstract][Full Text] [Related]
40. Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Rodrigues V Brain Res; 1988 Jun; 453(1-2):299-307. PubMed ID: 3135918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]