BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 18537261)

  • 1. Identification and site-specific relative quantification of beta-lactoglobulin modifications in heated milk and dairy products.
    Meltretter J; Becker CM; Pischetsrieder M
    J Agric Food Chem; 2008 Jul; 56(13):5165-71. PubMed ID: 18537261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of heat treatment of dairy products by MALDI-TOF-MS.
    Meltretter J; Birlouez-Aragon I; Becker CM; Pischetsrieder M
    Mol Nutr Food Res; 2009 Dec; 53(12):1487-95. PubMed ID: 19760680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose.
    Meltretter J; Seeber S; Humeny A; Becker CM; Pischetsrieder M
    J Agric Food Chem; 2007 Jul; 55(15):6096-103. PubMed ID: 17590008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.
    Meltretter J; Pischetsrieder M
    Ann N Y Acad Sci; 2008 Apr; 1126():134-40. PubMed ID: 18448807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the glycoxidation product Nε-carboxymethyllysine in the milk proteome.
    Meyer B; Al-Diab D; Vollmer G; Pischetsrieder M
    Proteomics; 2011 Feb; 11(3):420-8. PubMed ID: 21268271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Cozzolino R; Passalacqua S; Salemi S; Malvagna P; Spina E; Garozzo D
    J Mass Spectrom; 2001 Sep; 36(9):1031-7. PubMed ID: 11599081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site.
    Leonil J; Molle D; Fauquant J; Maubois JL; Pearce RJ; Bouhallab S
    J Dairy Sci; 1997 Oct; 80(10):2270-81. PubMed ID: 9361199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk.
    Lan XY; Wang JQ; Bu DP; Shen JS; Zheng N; Sun P
    J Food Sci; 2010 Oct; 75(8):C653-8. PubMed ID: 21535481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MALDI-TOF MS characterization of glycation products of whey proteins in a glucose/galactose model system and lactose-free milk.
    Carulli S; Calvano CD; Palmisano F; Pischetsrieder M
    J Agric Food Chem; 2011 Mar; 59(5):1793-803. PubMed ID: 21319853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified peptides as indicators for thermal and nonthermal reactions in processed milk.
    Meltretter J; Wüst J; Pischetsrieder M
    J Agric Food Chem; 2014 Nov; 62(45):10903-15. PubMed ID: 25329723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of α-lactalbumin:β-lactoglobulin ratio on the heat stability of model infant milk formula protein systems.
    Crowley SV; Dowling AP; Caldeo V; Kelly AL; O'Mahony JA
    Food Chem; 2016 Mar; 194():184-90. PubMed ID: 26471542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of reducing/nonreducing two-dimensional electrophoresis for the study of disulfide-mediated interactions between proteins in raw and heated bovine milk.
    Chevalier F; Hirtz C; Sommerer N; Kelly AL
    J Agric Food Chem; 2009 Jul; 57(13):5948-55. PubMed ID: 19526987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of nonenzymatic post-translational β-lactoglobulin modifications in processed milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry.
    Meltretter J; Wüst J; Pischetsrieder M
    J Agric Food Chem; 2013 Jul; 61(28):6971-81. PubMed ID: 23772976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of heat treatment of various types of milk.
    Sakkas L; Moutafi A; Moschopoulou E; Moatsou G
    Food Chem; 2014 Sep; 159():293-301. PubMed ID: 24767058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of protein oxidation products in the proteome of thermally processed milk.
    Meyer B; Baum F; Vollmer G; Pischetsrieder M
    J Agric Food Chem; 2012 Jul; 60(29):7306-11. PubMed ID: 22746820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute quantitation of beta-lactoglobulin by protein liquid chromatography-mass spectrometry and its application to different milk products.
    Czerwenka C; Maier I; Potocnik N; Pittner F; Lindner W
    Anal Chem; 2007 Jul; 79(14):5165-72. PubMed ID: 17555294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionisation mass spectrometry of a milk powder.
    Galvani M; Hamdan M; Righetti PG
    Rapid Commun Mass Spectrom; 2000; 14(20):1889-97. PubMed ID: 11013417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat treatment on the detection of intact bovine beta-lactoglobulins by LC mass spectrometry.
    Monaci L; van Hengel AJ
    J Agric Food Chem; 2007 Apr; 55(8):2985-92. PubMed ID: 17381107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of molecular weights of caprine milk proteins by matrix-assisted laser desorption/ionization mass spectrometry.
    Ham JS; Han GS; Jeong SG; Seol KH; Jang AR; Oh MH; Kim DH; Park YW
    J Dairy Sci; 2012 Jan; 95(1):15-9. PubMed ID: 22192180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility.
    Wada Y; Lönnerdal B
    J Agric Food Chem; 2014 May; 62(18):4175-85. PubMed ID: 24720734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.