These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18537290)

  • 21. Impact of the composition of alginate and gelatin derivatives in bioconjugated hydrogels on the fabrication of cell sheets and spherical tissues with living cell sheaths.
    Liu Y; Sakai S; Taya M
    Acta Biomater; 2013 May; 9(5):6616-23. PubMed ID: 23395920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate.
    Zhang H; Liao H; Chen W
    J Biomater Sci Polym Ed; 2010; 21(3):329-42. PubMed ID: 20178689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking.
    Hu X; Lu L; Xu C; Li X
    Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium alginate microcapsules with spherical liquid cores templated by gelatin microparticles for mass production of multicellular spheroids.
    Sakai S; Ito S; Kawakami K
    Acta Biomater; 2010 Aug; 6(8):3132-7. PubMed ID: 20144915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.
    Xu T; Zhao W; Zhu JM; Albanna MZ; Yoo JJ; Atala A
    Biomaterials; 2013 Jan; 34(1):130-9. PubMed ID: 23063369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels.
    Dietrich F; Lelkes PI
    Angiogenesis; 2006; 9(3):111-25. PubMed ID: 17051343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactoyl-poloxamine/collagen matrix for cell-containing tissue engineering modules.
    Sosnik A; Leung BM; Sefton MV
    J Biomed Mater Res A; 2008 Aug; 86(2):339-53. PubMed ID: 17969022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrodeposition of alginate gels for construction of vascular-like structures.
    Ozawa F; Ino K; Takahashi Y; Shiku H; Matsue T
    J Biosci Bioeng; 2013 Apr; 115(4):459-61. PubMed ID: 23219023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A controlled-release strategy for the generation of cross-linked hydrogel microstructures.
    Franzesi GT; Ni B; Ling Y; Khademhosseini A
    J Am Chem Soc; 2006 Nov; 128(47):15064-5. PubMed ID: 17117838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers.
    Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH
    J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pullulan-based hydrogel for smooth muscle cell culture.
    Autissier A; Letourneur D; Le Visage C
    J Biomed Mater Res A; 2007 Aug; 82(2):336-42. PubMed ID: 17295223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication.
    Sakai S; Liu Y; Mah EJ; Taya M
    Biofabrication; 2013 Mar; 5(1):015012. PubMed ID: 23319520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds.
    Lee CS; Gleghorn JP; Won Choi N; Cabodi M; Stroock AD; Bonassar LJ
    Biomaterials; 2007 Jul; 28(19):2987-93. PubMed ID: 17382380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of cellular adhesiveness in an alginate-based hydrogel by varying peroxidase and H(2)O(2) concentrations during gelation.
    Sakai S; Hirose K; Moriyama K; Kawakami K
    Acta Biomater; 2010 Apr; 6(4):1446-52. PubMed ID: 19818883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions.
    Yamada M; Utoh R; Ohashi K; Tatsumi K; Yamato M; Okano T; Seki M
    Biomaterials; 2012 Nov; 33(33):8304-15. PubMed ID: 22906609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium.
    Liang Y; Liu W; Han B; Yang C; Ma Q; Song F; Bi Q
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):1-7. PubMed ID: 20832263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adipose tissue engineering using injectable, oxidized alginate hydrogels.
    Kim WS; Mooney DJ; Arany PR; Lee K; Huebsch N; Kim J
    Tissue Eng Part A; 2012 Apr; 18(7-8):737-43. PubMed ID: 22011105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionically cross-linked carrageenan-alginate hydrogel beads.
    Mohamadnia Z; Zohuriaan-Mehr MJ; Kabiri K; Jamshidi A; Mobedi H
    J Biomater Sci Polym Ed; 2008; 19(1):47-59. PubMed ID: 18177553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpenetrating gelatin/alginate mixed hydrogel: The simplest method to prepare an autoclavable scaffold.
    Mori H; Taketsuna Y; Shimogama K; Nishi K; Hara M
    J Biosci Bioeng; 2024 Jun; 137(6):463-470. PubMed ID: 38570220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.