These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18537359)

  • 1. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices.
    Matula TJ; Hilmo PR; Bailey MR
    J Acoust Soc Am; 2005 Jul; 118(1):178-85. PubMed ID: 16119340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal stress wave measurements in solids subjected to lithotripter pulses.
    Gracewski SM; Dahake G; Ding Z; Burns SJ; Everbach EC
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):652-61. PubMed ID: 8370871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study.
    Zhong P; Lin H; Xi X; Zhu S; Bhogte ES
    J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.
    Hochberger J; Gruber E; Wirtz P; Dürr U; Kolb A; Zanger U; Hahn EG; Ell C
    Gastroenterology; 1991 Nov; 101(5):1391-8. PubMed ID: 1682203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory.
    de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2015 Apr; 58():53-9. PubMed ID: 25553714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.
    Perez C; Chen H; Matula TJ; Karzova M; Khokhlova VA
    J Acoust Soc Am; 2013 Aug; 134(2):1663-74. PubMed ID: 23927207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of negative pressure waves for cavitation studies.
    Carnell MT; Gentry TP; Emmony DC
    Ultrasonics; 1998 Feb; 36(1-5):689-93. PubMed ID: 9651598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic hydrophone for pressure determination of shock wave pulses.
    Etienne J; Filipczyński L; Kujawska T; Zienkiewicz B
    Ultrasound Med Biol; 1997; 23(5):747-54. PubMed ID: 9253822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.
    Qin J; Simmons WN; Sankin G; Zhong P
    J Acoust Soc Am; 2010 Apr; 127(4):2635-45. PubMed ID: 20370044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between shock wave and single inertial bubbles near an elastic boundary.
    Sankin GN; Zhong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046304. PubMed ID: 17155170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic field of a ballistic shock wave therapy device.
    Cleveland RO; Chitnis PV; McClure SR
    Ultrasound Med Biol; 2007 Aug; 33(8):1327-35. PubMed ID: 17467154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.