These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 18537382)
1. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. Sun XM J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382 [TBL] [Abstract][Full Text] [Related]
2. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736 [TBL] [Abstract][Full Text] [Related]
3. Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams. Zhang F; Boettcher FA; Sun XM Int J Audiol; 2007 Apr; 46(4):187-95. PubMed ID: 17454232 [TBL] [Abstract][Full Text] [Related]
4. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears. Sun XM Hear Res; 2008 Mar; 237(1-2):66-75. PubMed ID: 18258398 [TBL] [Abstract][Full Text] [Related]
6. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. Sun XM; Shaver MD Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291 [TBL] [Abstract][Full Text] [Related]
7. Contralateral noise has possible asymmetric frequency-sensitive effect on the 2F1-F2 otoacoustic emission in humans. Atcherson SR; Martin MJ; Lintvedt R Neurosci Lett; 2008 Jun; 438(1):107-10. PubMed ID: 18472335 [TBL] [Abstract][Full Text] [Related]
9. Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation. Henin S; Thompson S; Abdelrazeq S; Long GR J Acoust Soc Am; 2011 Apr; 129(4):2068-79. PubMed ID: 21476662 [TBL] [Abstract][Full Text] [Related]
10. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. Deeter R; Abel R; Calandruccio L; Dhar S J Acoust Soc Am; 2009 Nov; 126(5):2413-24. PubMed ID: 19894823 [TBL] [Abstract][Full Text] [Related]
11. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study. Bolay H; Bayazit YA; Gündüz B; Ugur AK; Akçali D; Altunyay S; Ilica S; Babacan A Cephalalgia; 2008 Apr; 28(4):309-17. PubMed ID: 18279433 [TBL] [Abstract][Full Text] [Related]
12. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
13. Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms. Wagner W; Heyd A Otol Neurotol; 2011 Oct; 32(8):1379-88. PubMed ID: 21921859 [TBL] [Abstract][Full Text] [Related]
14. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels. Wolter NE; Harrison RV; James AL Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024 [TBL] [Abstract][Full Text] [Related]
15. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. Zhu X; Vasilyeva ON; Kim S; Jacobson M; Romney J; Waterman MS; Tuttle D; Frisina RD J Comp Neurol; 2007 Aug; 503(5):593-604. PubMed ID: 17559088 [TBL] [Abstract][Full Text] [Related]
16. Neurotoxicity of BFM-95 on the medial olivocochlear bundle assessed by means of contralateral suppression of 2f1-f2 distortion product otoacoustic emissions. Riga M; Korres S; Psarommatis I; Varvutsi M; Giotakis I; Papadas T; Ferekidis E; Apostolopoulos N Otol Neurotol; 2007 Feb; 28(2):208-12. PubMed ID: 17255889 [TBL] [Abstract][Full Text] [Related]
17. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Dreisbach LE; Long KM; Lees SE Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans. Müller J; Janssen T; Heppelmann G; Wagner W J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819 [TBL] [Abstract][Full Text] [Related]
19. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition. Vetesník A; Turcanu D; Dalhoff E; Gummer AW Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509 [TBL] [Abstract][Full Text] [Related]
20. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs]. Kong W; Yang Y; Zhang W Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]