BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18537394)

  • 1. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M; Barry M; Wei T
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds.
    Neubauer J; Zhang Z; Miraghaie R; Berry DA
    J Acoust Soc Am; 2007 Feb; 121(2):1102-18. PubMed ID: 17348532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Biomech; 2009 Oct; 42(14):2219-25. PubMed ID: 19664777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical and experimental investigation of the effect of false vocal fold geometry on glottal flow.
    Farahani MH; Mousel J; Alipour F; Vigmostad S
    J Biomech Eng; 2013 Dec; 135(12):121006. PubMed ID: 24008864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.