These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18537397)

  • 1. A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/.
    Zhou X; Espy-Wilson CY; Boyce S; Tiede M; Holland C; Choe A
    J Acoust Soc Am; 2008 Jun; 123(6):4466-81. PubMed ID: 18537397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Articulatory tongue shape analysis of Mandarin alveolar-retroflex contrast.
    Luo S
    J Acoust Soc Am; 2020 Oct; 148(4):1961. PubMed ID: 33138504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic modeling of American English /r/.
    Espy-Wilson CY; Boyce SE; Jackson M; Narayanan S; Alwan A
    J Acoust Soc Am; 2000 Jul; 108(1):343-56. PubMed ID: 10923897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production.
    Nieto-Castanon A; Guenther FH; Perkell JS; Curtin HD
    J Acoust Soc Am; 2005 May; 117(5):3196-212. PubMed ID: 15957787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the effect of palate shape on the articulatory-acoustics mapping.
    Bakst S; Johnson K
    J Acoust Soc Am; 2018 Jul; 144(1):EL71. PubMed ID: 30075643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Articulatory tradeoffs reduce acoustic variability during American English /r/ production.
    Guenther FH; Espy-Wilson CY; Boyce SE; Matthies ML; Zandipour M; Perkell JS
    J Acoust Soc Am; 1999 May; 105(5):2854-65. PubMed ID: 10335635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system.
    Callan DE; Kent RD; Guenther FH; Vorperian HK
    J Speech Lang Hear Res; 2000 Jun; 43(3):721-36. PubMed ID: 10877441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies.
    Lammert AC; Narayanan SS
    PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the immediate effects of two semi-ocluded vocal tract exercises.
    Sampaio M; Oliveira G; Behlau M
    Pro Fono; 2008; 20(4):261-6. PubMed ID: 19142470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric measurements of vocal tracts for male speakers from different races.
    Xue SA; Hao GJ; Mayo R
    Clin Linguist Phon; 2006 Nov; 20(9):691-702. PubMed ID: 17342877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice Quality in Native and Foreign Languages Investigated by Inverse Filtering and Perceptual Analyses.
    Järvinen K; Laukkanen AM; Geneid A
    J Voice; 2017 Mar; 31(2):261.e25-261.e31. PubMed ID: 27495969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part II. The rhotics.
    Alwan A; Narayanan S; Haker K
    J Acoust Soc Am; 1997 Feb; 101(2):1078-89. PubMed ID: 9035399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.