BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 18537404)

  • 1. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.
    Shapiro AD; Wang C
    J Acoust Soc Am; 2009 Jul; 126(1):451-9. PubMed ID: 19603902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model.
    Deng L; Kheirallah I
    IEEE Trans Biomed Eng; 1993 May; 40(5):456-67. PubMed ID: 8225334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligibility and listener preference of telephone speech in the presence of babble noise.
    Hall JL; Flanagan JL
    J Acoust Soc Am; 2010 Jan; 127(1):280-5. PubMed ID: 20058974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal envelope compensation for robust phoneme recognition using modulation spectrum.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2010 Dec; 128(6):3769-80. PubMed ID: 21218908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sawtooth waveform inspired pitch estimator for speech and music.
    Camacho A; Harris JG
    J Acoust Soc Am; 2008 Sep; 124(3):1638-52. PubMed ID: 19045655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation frequency features for phoneme recognition in noisy speech.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2009 Jan; 125(1):EL8-12. PubMed ID: 19173383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise tolerance in human frequency-following responses to voice pitch.
    Li X; Jeng FC
    J Acoust Soc Am; 2011 Jan; 129(1):EL21-6. PubMed ID: 21302977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiresolutional modification of speech signals for listeners with hearing impairment.
    Erogul O; Karagöz I
    J Rehabil Res Dev; 1999 Jul; 36(3):230-6. PubMed ID: 10659806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static features in real-time recognition of isolated vowels at high pitch.
    Ferreira AJ
    J Acoust Soc Am; 2007 Oct; 122(4):2389-404. PubMed ID: 17902873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative intelligibility study of single-microphone noise reduction algorithms.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2007 Sep; 122(3):1777. PubMed ID: 17927437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences.
    Stickney GS; Assmann PF; Chang J; Zeng FG
    J Acoust Soc Am; 2007 Aug; 122(2):1069-78. PubMed ID: 17672654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech.
    Jokinen E; Yrttiaho S; Pulakka H; Vainio M; Alku P
    J Acoust Soc Am; 2012 Dec; 132(6):3990-4001. PubMed ID: 23231128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech signal modification to increase intelligibility in noisy environments.
    Yoo SD; Boston JR; El-Jaroudi A; Li CC; Durrant JD; Kovacyk K; Shaiman S
    J Acoust Soc Am; 2007 Aug; 122(2):1138-49. PubMed ID: 17672660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on speech intelligibility of temporal jittering and spectral smearing of the high-frequency components of speech.
    MacDonald EN; Pichora-Fuller MK; Schneider BA
    Hear Res; 2010 Mar; 261(1-2):63-6. PubMed ID: 20093174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.
    Chabries DM; Christiansen RW; Brey RH; Robinette MS; Harris RW
    J Rehabil Res Dev; 1987; 24(4):65-74. PubMed ID: 3430391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolarynx in voice rehabilitation.
    Liu H; Ng ML
    Auris Nasus Larynx; 2007 Sep; 34(3):327-32. PubMed ID: 17239553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic intelligibility assessment of pathologic speech over the telephone.
    Haderlein T; Nöth E; Batliner A; Eysholdt U; Rosanowski F
    Logoped Phoniatr Vocol; 2011 Dec; 36(4):175-81. PubMed ID: 21875389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.
    Nixon C; Anderson T; Morris L; McCavitt A; McKinley R; Yeager D; McDaniel M
    Aviat Space Environ Med; 1998 Nov; 69(11):1087-94. PubMed ID: 9819167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.