BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18537542)

  • 1. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen/deuterium exchange mass spectrometric analysis of conformational changes accompanying the assembly of the yeast prion Ure2p into protein fibrils.
    Redeker V; Halgand F; Le Caer JP; Bousset L; Laprévote O; Melki R
    J Mol Biol; 2007 Jun; 369(4):1113-25. PubMed ID: 17482207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.
    Jiang Y; Li H; Zhu L; Zhou JM; Perrett S
    J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques.
    Perutz MF; Pope BJ; Owen D; Wanker EE; Scherzinger E
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5596-600. PubMed ID: 11960015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies.
    Kabani M; Melki R
    Prion; 2011; 5(4):277-84. PubMed ID: 22052349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prions of yeast as heritable amyloidoses.
    Wickner RB; Taylor KL; Edskes HK; Maddelein ML; Moriyama H; Roberts BT
    J Struct Biol; 2000 Jun; 130(2-3):310-22. PubMed ID: 10940235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the prion Ure2p in protein fibrils assembled in vitro.
    Fay N; Redeker V; Savistchenko J; Dubois S; Bousset L; Melki R
    J Biol Chem; 2005 Nov; 280(44):37149-58. PubMed ID: 16131495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scrambled prion domains form prions and amyloid.
    Ross ED; Baxa U; Wickner RB
    Mol Cell Biol; 2004 Aug; 24(16):7206-13. PubMed ID: 15282319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p.
    Chan JC; Oyler NA; Yau WM; Tycko R
    Biochemistry; 2005 Aug; 44(31):10669-80. PubMed ID: 16060675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion.
    DePace AH; Santoso A; Hillner P; Weissman JS
    Cell; 1998 Jun; 93(7):1241-52. PubMed ID: 9657156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils.
    Ranson N; Stromer T; Bousset L; Melki R; Serpell LC
    Protein Sci; 2006 Nov; 15(11):2481-7. PubMed ID: 17001037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short disordered protein segment regulates cross-species transmission of a yeast prion.
    Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M
    Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibril-induced glutamine-/asparagine-rich prions recruit stress granule proteins in mammalian cells.
    Riemschoss K; Arndt V; Bolognesi B; von Eisenhart-Rothe P; Liu S; Buravlova O; Duernberger Y; Paulsen L; Hornberger A; Hossinger A; Lorenzo-Gotor N; Hogl S; Müller SA; Tartaglia G; Lichtenthaler SF; Vorberg IM
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31266883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional determinants of prion formation in yeast.
    Toombs JA; McCarty BR; Ross ED
    Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p.
    Bousset L; Redeker V; Decottignies P; Dubois S; Le Maréchal P; Melki R
    Biochemistry; 2004 May; 43(17):5022-32. PubMed ID: 15109261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.