These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18537683)

  • 1. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.
    Sau S; Chattoraj P; Ganguly T; Chanda PK; Mandal NC
    Curr Protein Pept Sci; 2008 Jun; 9(3):284-90. PubMed ID: 18537683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial drug discovery through bacteriophage genomics.
    Liu J; Dehbi M; Moeck G; Arhin F; Bauda P; Bergeron D; Callejo M; Ferretti V; Ha N; Kwan T; McCarty J; Srikumar R; Williams D; Wu JJ; Gros P; Pelletier J; DuBow M
    Nat Biotechnol; 2004 Feb; 22(2):185-91. PubMed ID: 14716317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drugs against superbugs: private lessons from bacteriophages.
    Brown ED
    Trends Biotechnol; 2004 Sep; 22(9):434-6. PubMed ID: 15331220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.
    Drulis-Kawa Z; Majkowska-Skrobek G; Maciejewska B; Delattre AS; Lavigne R
    Curr Protein Pept Sci; 2012 Dec; 13(8):699-722. PubMed ID: 23305359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting phage strategies to modulate bacterial transcription.
    Wahl MC; Sen R
    Transcription; 2019; 10(4-5):222-230. PubMed ID: 31663818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.
    Vaks L; Benhar I
    Methods Mol Biol; 2011; 726():187-206. PubMed ID: 21424451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa.
    Van den Bossche A; Ceyssens PJ; De Smet J; Hendrix H; Bellon H; Leimer N; Wagemans J; Delattre AS; Cenens W; Aertsen A; Landuyt B; Minakhin L; Severinov K; Noben JP; Lavigne R
    J Proteome Res; 2014 Oct; 13(10):4446-56. PubMed ID: 25185497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome.
    Roucourt B; Lavigne R
    Environ Microbiol; 2009 Nov; 11(11):2789-805. PubMed ID: 19691505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages.
    Habann M; Leiman PG; Vandersteegen K; Van den Bossche A; Lavigne R; Shneider MM; Bielmann R; Eugster MR; Loessner MJ; Klumpp J
    Mol Microbiol; 2014 Apr; 92(1):84-99. PubMed ID: 24673724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa.
    Wagemans J; Blasdel BG; Van den Bossche A; Uytterhoeven B; De Smet J; Paeshuyse J; Cenens W; Aertsen A; Uetz P; Delattre AS; Ceyssens PJ; Lavigne R
    Cell Microbiol; 2014 Dec; 16(12):1822-35. PubMed ID: 25059764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage and their lysins for elimination of infectious bacteria.
    O'Flaherty S; Ross RP; Coffey A
    FEMS Microbiol Rev; 2009 Jul; 33(4):801-19. PubMed ID: 19416364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage-inspired antibiotics?
    Projan S
    Nat Biotechnol; 2004 Feb; 22(2):167-8. PubMed ID: 14755287
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii.
    Stoffels L; Taunt HN; Charalambous B; Purton S
    Plant Biotechnol J; 2017 Sep; 15(9):1130-1140. PubMed ID: 28160380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs.
    Mirski T; Lidia M; Nakonieczna A; Gryko R
    Ann Agric Environ Med; 2019 Jun; 26(2):203-209. PubMed ID: 31232046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The functions of bacteriophage proteins].
    Brzozowska E; Bazan J; Gamian A
    Postepy Hig Med Dosw (Online); 2011 Mar; 65():167-76. PubMed ID: 21502693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeletal proteins participate in conserved viral strategies across kingdoms of life.
    Erb ML; Pogliano J
    Curr Opin Microbiol; 2013 Dec; 16(6):786-9. PubMed ID: 24055040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking free: "protein antibiotics" and phage lysis.
    Bernhardt TG; Wang IN; Struck DK; Young R
    Res Microbiol; 2002 Oct; 153(8):493-501. PubMed ID: 12437210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophages and phage-derived proteins--application approaches.
    Drulis-Kawa Z; Majkowska-Skrobek G; Maciejewska B
    Curr Med Chem; 2015; 22(14):1757-73. PubMed ID: 25666799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.
    Comeau AM; Tétart F; Trojet SN; Prère MF; Krisch HM
    PLoS One; 2007 Aug; 2(8):e799. PubMed ID: 17726529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage gene products as potential antimicrobials against tuberculosis.
    Puiu M; Julius C
    Biochem Soc Trans; 2019 Jun; 47(3):847-860. PubMed ID: 31085613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.