BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18537713)

  • 1. A novel mercaptopyruvate sulfurtransferase thioredoxin-dependent redox-sensing molecular switch: a mechanism for the maintenance of cellular redox equilibrium.
    Nagahara N
    Mini Rev Med Chem; 2008 Jun; 8(6):585-9. PubMed ID: 18537713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation.
    Nagahara N; Yoshii T; Abe Y; Matsumura T
    J Biol Chem; 2007 Jan; 282(3):1561-9. PubMed ID: 17130129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches.
    Nagahara N
    Antioxid Redox Signal; 2013 Nov; 19(15):1792-802. PubMed ID: 23146073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase.
    Nagahara N; Nagano M; Ito T; Suzuki H
    Methods Enzymol; 2015; 554():229-54. PubMed ID: 25725525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is novel signal transducer sulfur oxide involved in the redox cycle of persulfide at the catalytic site cysteine in a stable reaction intermediate of mercaptopyruvate sulfurtransferase?
    Nagahara N; Nirasawa T; Yoshii T; Niimura Y
    Antioxid Redox Signal; 2012 Apr; 16(8):747-53. PubMed ID: 22149235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mercaptopyruvate pathway in cysteine catabolism: a physiologic role and related disease of the multifunctional 3-mercaptopyruvate sulfurtransferase.
    Nagahara N; Sawada N
    Curr Med Chem; 2006; 13(10):1219-30. PubMed ID: 16719781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase.
    Yadav PK; Yamada K; Chiku T; Koutmos M; Banerjee R
    J Biol Chem; 2013 Jul; 288(27):20002-13. PubMed ID: 23698001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide.
    Westrop GD; Georg I; Coombs GH
    J Biol Chem; 2009 Nov; 284(48):33485-94. PubMed ID: 19762467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple role of 3-mercaptopyruvate sulfurtransferase: antioxidative function, H
    Nagahara N
    Br J Pharmacol; 2018 Feb; 175(4):577-589. PubMed ID: 29156095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative pathway of H
    Nagahara N; Koike S; Nirasawa T; Kimura H; Ogasawara Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):648-653. PubMed ID: 29331374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis.
    Nagahara N; Okazaki T; Nishino T
    J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity labeling of a catalytic site, cysteine(247), in rat mercaptopyruvate sulfurtransferase by chloropyruvate as an analog of a substrate.
    Nagahara N; Sawada N; Nakagawa T
    Biochimie; 2004; 86(9-10):723-9. PubMed ID: 15556283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis.
    Nagahara N; Nishino T
    J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox control of caspase-3 activity by thioredoxin and other reduced proteins.
    Baker A; Santos BD; Powis G
    Biochem Biophys Res Commun; 2000 Feb; 268(1):78-81. PubMed ID: 10652216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
    Nagahara N
    Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer.
    Weichsel A; Gasdaska JR; Powis G; Montfort WR
    Structure; 1996 Jun; 4(6):735-51. PubMed ID: 8805557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.
    Nagahara N
    Biomolecules; 2020 May; 10(6):. PubMed ID: 32481517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic site cysteines of thiol enzyme: sulfurtransferases.
    Nagahara N
    J Amino Acids; 2011; 2011():709404. PubMed ID: 22332003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and biological activities of thioredoxins.
    Powis G; Montfort WR
    Annu Rev Pharmacol Toxicol; 2001; 41():261-95. PubMed ID: 11264458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.