These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 18538346)

  • 21. Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel.
    Laver DR; Honen BN
    J Gen Physiol; 2008 Oct; 132(4):429-46. PubMed ID: 18824590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.
    Cherednichenko G; Zima AV; Feng W; Schaefer S; Blatter LA; Pessah IN
    Circ Res; 2004 Mar; 94(4):478-86. PubMed ID: 14699012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle.
    Noble K; Matthew A; Burdyga T; Wray S
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S11-9. PubMed ID: 19285773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model.
    Shannon TR; Wang F; Bers DM
    Biophys J; 2005 Dec; 89(6):4096-110. PubMed ID: 16169970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis?
    Eisner DA; Kashimura T; O'Neill SC; Venetucci LA; Trafford AW
    J Mol Cell Cardiol; 2009 Apr; 46(4):474-81. PubMed ID: 19150449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle-specific GSTM2-2 on the luminal side of the sarcoplasmic reticulum modifies RyR ion channel activity.
    Wei L; Abdellatif YA; Liu D; Kimura T; Coggan M; Gallant EM; Beard NA; Board PG; Dulhunty AF
    Int J Biochem Cell Biol; 2008; 40(8):1616-28. PubMed ID: 18308613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle.
    Wei L; Hanna AD; Beard NA; Dulhunty AF
    Cell Calcium; 2009 May; 45(5):474-84. PubMed ID: 19376574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle.
    Guo T; Gillespie D; Fill M
    Circ Res; 2012 Jun; 111(1):28-36. PubMed ID: 22628577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination.
    Cannell MB; Kong CH; Imtiaz MS; Laver DR
    Biophys J; 2013 May; 104(10):2149-59. PubMed ID: 23708355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling.
    Kirchhefer U; Wehrmeister D; Postma AV; Pohlentz G; Mormann M; Kucerova D; Müller FU; Schmitz W; Schulze-Bahr E; Wilde AA; Neumann J
    J Mol Cell Cardiol; 2010 Jul; 49(1):95-105. PubMed ID: 20302875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick.
    Vinogradova TM; Maltsev VA; Bogdanov KY; Lyashkov AE; Lakatta EG
    Ann N Y Acad Sci; 2005 Jun; 1047():138-56. PubMed ID: 16093492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of calsequestrin over-expression on excitation-contraction coupling in isolated rabbit cardiomyocytes.
    Miller SL; Currie S; Loughrey CM; Kettlewell S; Seidler T; Reynolds DF; Hasenfuss G; Smith GL
    Cardiovasc Res; 2005 Sep; 67(4):667-77. PubMed ID: 15913577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks.
    Sato D; Shannon TR; Bers DM
    Biophys J; 2016 Jan; 110(2):382-390. PubMed ID: 26789761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture.
    Laver DR; Kong CH; Imtiaz MS; Cannell MB
    J Mol Cell Cardiol; 2013 Jan; 54():98-100. PubMed ID: 23123322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine.
    Murayama T; Kurebayashi N; Ogawa Y
    Biophys J; 2000 Apr; 78(4):1810-24. PubMed ID: 10733962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels.
    Laver DR; van Helden DF
    J Mol Cell Cardiol; 2011 Sep; 51(3):357-69. PubMed ID: 21624373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure.
    Lu L; Xia L; Ye X; Cheng H
    Phys Biol; 2010 May; 7(2):026005. PubMed ID: 20505230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scale models of local control of calcium induced calcium release.
    Hinch R; Greenstein JL; Winslow RL
    Prog Biophys Mol Biol; 2006; 90(1-3):136-50. PubMed ID: 16321427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sarcoplasmic reticulum and arrhythmogenic calcium release.
    Venetucci LA; Trafford AW; O'Neill SC; Eisner DA
    Cardiovasc Res; 2008 Jan; 77(2):285-92. PubMed ID: 18006483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.