These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 18539188)
21. Computing the stability of steady-state solutions of mathematical models of the electrical activity in the heart. Tveito A; Skavhaug O; Lines GT; Artebrant R Comput Biol Med; 2011 Aug; 41(8):611-8. PubMed ID: 21632044 [TBL] [Abstract][Full Text] [Related]
22. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study. Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084 [TBL] [Abstract][Full Text] [Related]
23. [Effective control of excitable waves in 2D cardiac excitable media]. Li L; Liu L; Zhang G; Wang G; Qu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076 [TBL] [Abstract][Full Text] [Related]
24. A note on a method for determining advantageous properties of an anti-arrhythmic drug based on a mathematical model of cardiac cells. Tveito A; Lines GT Math Biosci; 2009 Feb; 217(2):167-73. PubMed ID: 19135068 [TBL] [Abstract][Full Text] [Related]
25. Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. Aslanidi OV; Bailey A; Biktashev VN; Clayton RH; Holden AV Chaos; 2002 Sep; 12(3):843-851. PubMed ID: 12779612 [TBL] [Abstract][Full Text] [Related]
26. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Benson AP; Aslanidi OV; Zhang H; Holden AV Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298 [TBL] [Abstract][Full Text] [Related]
27. Reentry wave formation in excitable media with stochastically generated inhomogeneities. Kuklik P; Zebrowski JJ Chaos; 2005 Sep; 15(3):33301. PubMed ID: 16252987 [TBL] [Abstract][Full Text] [Related]
29. An efficient numerical technique for the solution of the monodomain and bidomain equations. Whiteley JP IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318 [TBL] [Abstract][Full Text] [Related]
30. Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Bartocci E; Singh R; von Stein FB; Amedome A; Caceres AJ; Castillo J; Closser E; Deards G; Goltsev A; Ines RS; Isbilir C; Marc JK; Moore D; Pardi D; Sadhu S; Sanchez S; Sharma P; Singh A; Rogers J; Wolinetz A; Grosso-Applewhite T; Zhao K; Filipski AB; Gilmour RF; Grosu R; Glimm J; Smolka SA; Cherry EM; Clarke EM; Griffeth N; Fenton FH Adv Physiol Educ; 2011 Dec; 35(4):427-37. PubMed ID: 22139782 [TBL] [Abstract][Full Text] [Related]
31. Spiral wave control by a localized stimulus: a bidomain model study. Ashihara T; Namba T; Ito M; Ikeda T; Nakazawa K; Trayanova N J Cardiovasc Electrophysiol; 2004 Feb; 15(2):226-33. PubMed ID: 15028055 [TBL] [Abstract][Full Text] [Related]
32. Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. Bray MA; Wikswo JP IEEE Trans Biomed Eng; 2002 Oct; 49(10):1086-93. PubMed ID: 12374332 [TBL] [Abstract][Full Text] [Related]
33. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461 [TBL] [Abstract][Full Text] [Related]
34. Characteristic and critical excitation length scales in 1-D and 2-D simulations of reentrant cardiac arrhythmias using simple two-variable models. Chernyak YB; Starobin JM Crit Rev Biomed Eng; 1999; 27(3-5):359-414. PubMed ID: 10864284 [TBL] [Abstract][Full Text] [Related]
35. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy. Kuklik P; Szumowski L; Sanders P; Zebrowski JJ Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951 [TBL] [Abstract][Full Text] [Related]
36. Refractoriness of cardiac muscle as affected by intercalated disks: a model study implications for fibrillation and defibrillation. Haas HG; Solchenbach K Gen Physiol Biophys; 2004 Jun; 23(2):133-71. PubMed ID: 15696857 [TBL] [Abstract][Full Text] [Related]
37. A reliability analysis of cardiac repolarization time markers. Scacchi S; Franzone PC; Pavarino LF; Taccardi B Math Biosci; 2009 Jun; 219(2):113-28. PubMed ID: 19328815 [TBL] [Abstract][Full Text] [Related]
38. New index for categorising cardiac reentrant wave: in silico evaluation. Shim EB; Hong SB; Lim KM; Leem CH; Youn CH; Pak HN; Earm YE; Noble D IET Syst Biol; 2011 Sep; 5(5):317-23. PubMed ID: 22010758 [TBL] [Abstract][Full Text] [Related]
39. Computer simulations of successful defibrillation in decoupled and non-uniform cardiac tissue. Kuijpers NH; Keldermann RH; Arts T; Hilbers PA Europace; 2005 Sep; 7 Suppl 2():166-77. PubMed ID: 16102514 [TBL] [Abstract][Full Text] [Related]
40. A time-dependent adaptive remeshing for electrical waves of the heart. Belhamadia Y IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]