BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18539393)

  • 1. Regional-specific global cytosine methylation and DNA methyltransferase expression in the adult rat hippocampus.
    Brown SE; Weaver IC; Meaney MJ; Szyf M
    Neurosci Lett; 2008 Jul; 440(1):49-53. PubMed ID: 18539393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain.
    Numachi Y; Yoshida S; Yamashita M; Fujiyama K; Naka M; Matsuoka H; Sato M; Sora I
    Ann N Y Acad Sci; 2004 Oct; 1025():102-9. PubMed ID: 15542706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific targeting of cytosine methylation to DNA sequences in vivo.
    Smith AE; Ford KG
    Nucleic Acids Res; 2007; 35(3):740-54. PubMed ID: 17182629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular blueprint of gene expression in hippocampal subregions CA1, CA3, and DG is conserved in the brain of the common marmoset.
    Datson NA; Morsink MC; Steenbergen PJ; Aubert Y; Schlumbohm C; Fuchs E; de Kloet ER
    Hippocampus; 2009 Aug; 19(8):739-52. PubMed ID: 19156849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mitogenic stimulation and DNA methylation on human T cell DNA methyltransferase expression and activity.
    Yang J; Deng C; Hemati N; Hanash SM; Richardson BC
    J Immunol; 1997 Aug; 159(3):1303-9. PubMed ID: 9233626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The social environment and the epigenome.
    Szyf M; McGowan P; Meaney MJ
    Environ Mol Mutagen; 2008 Jan; 49(1):46-60. PubMed ID: 18095330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat.
    Szyf M; Weaver IC; Champagne FA; Diorio J; Meaney MJ
    Front Neuroendocrinol; 2005; 26(3-4):139-62. PubMed ID: 16303171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of DNMT-1 in patients with atopic dermatitis.
    Nakamura T; Sekigawa I; Ogasawara H; Mitsuishi K; Hira K; Ikeda S; Ogawa H
    Arch Dermatol Res; 2006 Oct; 298(5):253-6. PubMed ID: 16897079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contributions of de novo and maintenance DNA methyltransferases to object memory processing in the rat hippocampus and perirhinal cortex--a double dissociation.
    Mitchnick KA; Creighton S; O'Hara M; Kalisch BE; Winters BD
    Eur J Neurosci; 2015 Mar; 41(6):773-86. PubMed ID: 25639476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus.
    Luo Y; Li Y; Su Y; Yin H; Hu N; Wang S; Lu Q
    Br J Dermatol; 2008 Sep; 159(4):827-33. PubMed ID: 18644019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential repetitive DNA methylation in multiple myeloma molecular subgroups.
    Bollati V; Fabris S; Pegoraro V; Ronchetti D; Mosca L; Deliliers GL; Motta V; Bertazzi PA; Baccarelli A; Neri A
    Carcinogenesis; 2009 Aug; 30(8):1330-5. PubMed ID: 19531770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords.
    Zhou J; Wu YC; Xiao BJ; Guo XD; Zheng QX; Wu B
    Curr Med Sci; 2019 Feb; 39(1):67-74. PubMed ID: 30868493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetics in spermatogenesis.
    Trasler JM
    Mol Cell Endocrinol; 2009 Jul; 306(1-2):33-6. PubMed ID: 19481683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant DNA methylation in 5' regions of DNA methyltransferase genes in aborted bovine clones.
    Liu J; Liang X; Zhu J; Wei L; Hou Y; Chen DY; Sun QY
    J Genet Genomics; 2008 Sep; 35(9):559-68. PubMed ID: 18804075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant DNA methylation in thymic epithelial tumors.
    Chen C; Yin B; Wei Q; Li D; Hu J; Yu F; Lu Q
    Cancer Invest; 2009 Jun; 27(5):582-91. PubMed ID: 19340654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient global ischemia in rat brain promotes different NMDA receptor regulation depending on the brain structure studied.
    Dos-Anjos S; Martínez-Villayandre B; Montori S; Regueiro-Purriños MM; Gonzalo-Orden JM; Fernández-López A
    Neurochem Int; 2009; 54(3-4):180-5. PubMed ID: 19103243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineensis Jacq.) in relation to the 'mantled' somaclonal variation.
    Rival A; Jaligot E; Beulé T; Finnegan EJ
    J Exp Bot; 2008; 59(12):3271-81. PubMed ID: 18640997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain.
    Royland JE; Parker JS; Gilbert ME
    J Neuroendocrinol; 2008 Dec; 20(12):1319-38. PubMed ID: 19094080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat.
    Coupé B; Dutriez-Casteloot I; Breton C; Lefèvre F; Mairesse J; Dickes-Coopman A; Silhol M; Tapia-Arancibia L; Lesage J; Vieau D
    J Neuroendocrinol; 2009 Jan; 21(1):40-8. PubMed ID: 19094092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of global DNA methylation with infrared fluorescence in liver and muscle tissues of differentially fed boars.
    Braunschweig MH
    Luminescence; 2009; 24(4):213-6. PubMed ID: 19367662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.