These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 18539773)

  • 1. Ion exclusion by sub-2-nm carbon nanotube pores.
    Fornasiero F; Park HG; Holt JK; Stadermann M; Grigoropoulos CP; Noy A; Bakajin O
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17250-5. PubMed ID: 18539773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic ion selectivity of narrow hydrophobic pores.
    Song C; Corry B
    J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-tunable ion selectivity in carbon nanotube pores.
    Fornasiero F; In JB; Kim S; Park HG; Wang Y; Grigoropoulos CP; Noy A; Bakajin O
    Langmuir; 2010 Sep; 26(18):14848-53. PubMed ID: 20715879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes.
    Wu J; Gerstandt K; Zhang H; Liu J; Hinds BJ
    Nat Nanotechnol; 2012 Jan; 7(2):133-9. PubMed ID: 22245860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.
    Amiri H; Shepard KL; Nuckolls C; Hernández Sánchez R
    Nano Lett; 2017 Feb; 17(2):1204-1211. PubMed ID: 28103039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage gated carbon nanotube membranes.
    Majumder M; Zhan X; Andrews R; Hinds BJ
    Langmuir; 2007 Jul; 23(16):8624-31. PubMed ID: 17616216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
    Yao YC; Li Z; Gillen AJ; Yosinski S; Reed MA; Noy A
    J Chem Phys; 2021 May; 154(20):204704. PubMed ID: 34241182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery.
    Majumder M; Stinchcomb A; Hinds BJ
    Life Sci; 2010 Apr; 86(15-16):563-8. PubMed ID: 19383500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic rectification by electrostatically actuated tethers on single walled carbon nanotube membranes.
    Wu J; Zhan X; Hinds BJ
    Chem Commun (Camb); 2012 Aug; 48(64):7979-81. PubMed ID: 22773275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.
    Wei G; Quan X; Chen S; Fan X; Yu H; Zhao H
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14620-7. PubMed ID: 26103999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transport through vertically aligned large diameter MWCNTs embedded in parylene.
    Krishnakumar P; Tiwari PB; Staples S; Luo T; Darici Y; He J; Lindsay SM
    Nanotechnology; 2012 Nov; 23(45):455101. PubMed ID: 23064678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow.
    Majumder M; Chopra N; Hinds BJ
    ACS Nano; 2011 May; 5(5):3867-77. PubMed ID: 21500837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion permeation dynamics in carbon nanotubes.
    Liu H; Murad S; Jameson CJ
    J Chem Phys; 2006 Aug; 125(8):084713. PubMed ID: 16965045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube.
    Sumikama T; Saito S; Ohmine I
    J Phys Chem B; 2006 Oct; 110(41):20671-7. PubMed ID: 17034258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes.
    Armstrong JA; Bernal EE; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Aug; 29(32):10287-96. PubMed ID: 23902372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanical nanogate based on a carbon nanotube for reversible control of ion conduction.
    He Z; Corry B; Lu X; Zhou J
    Nanoscale; 2014 Apr; 6(7):3686-94. PubMed ID: 24566473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity.
    Liu TY; Yuan HG; Li Q; Tang YH; Zhang Q; Qian W; Van der Bruggen B; Wang X
    ACS Nano; 2015 Jul; 9(7):7488-96. PubMed ID: 26153719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.