These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 18540577)
1. Kinetics of redox polymer-mediated enzyme electrodes. Gallaway JW; Calabrese Barton SA J Am Chem Soc; 2008 Jul; 130(26):8527-36. PubMed ID: 18540577 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378 [TBL] [Abstract][Full Text] [Related]
3. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode. Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173 [TBL] [Abstract][Full Text] [Related]
4. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability. Rengaraj S; Kavanagh P; Leech D Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. Scodeller P; Carballo R; Szamocki R; Levin L; Forchiassin F; Calvo EJ J Am Chem Soc; 2010 Aug; 132(32):11132-40. PubMed ID: 20698679 [TBL] [Abstract][Full Text] [Related]
6. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878 [TBL] [Abstract][Full Text] [Related]
7. Scanning electrochemical microscopy activity mapping of electrodes modified with laccase encapsulated in sol-gel processed matrix. Nogala W; Szot K; Burchardt M; Jönsson-Niedziolka M; Rogalski J; Wittstock G; Opallo M Bioelectrochemistry; 2010 Aug; 79(1):101-7. PubMed ID: 20097139 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers. Jenkins PA; Boland S; Kavanagh P; Leech D Bioelectrochemistry; 2009 Sep; 76(1-2):162-8. PubMed ID: 19481981 [TBL] [Abstract][Full Text] [Related]
9. Micro-biofuel cell powered by glucose/O2 based on electro-deposition of enzyme, conducting polymer and redox mediators: preparation, characterization and performance in human serum. Ammam M; Fransaer J Biosens Bioelectron; 2010 Feb; 25(6):1474-80. PubMed ID: 20005695 [TBL] [Abstract][Full Text] [Related]
10. A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes. Boland S; Leech D Analyst; 2012 Jan; 137(1):113-7. PubMed ID: 22022699 [TBL] [Abstract][Full Text] [Related]
11. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing. Boussaad S; Diner BA; Fan J J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic oxidation of manganese ions catalysed by laccase. Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793 [TBL] [Abstract][Full Text] [Related]
13. Poly-o-aminophenol as a laccase mediator and influence of the enzyme on the polymer electrodeposition. Pałys B; Marzec M; Rogalski J Bioelectrochemistry; 2010 Nov; 80(1):43-8. PubMed ID: 20630809 [TBL] [Abstract][Full Text] [Related]
14. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications. Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452 [TBL] [Abstract][Full Text] [Related]
15. Metabolic control analysis of an enzymatic biofuel cell. Glykys DJ; Banta S Biotechnol Bioeng; 2009 Apr; 102(6):1624-35. PubMed ID: 19061242 [TBL] [Abstract][Full Text] [Related]
16. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes. Sadowska K; Stolarczyk K; Biernat JF; Roberts KP; Rogalski J; Bilewicz R Bioelectrochemistry; 2010 Nov; 80(1):73-80. PubMed ID: 20609634 [TBL] [Abstract][Full Text] [Related]
17. A biofuel cell with electrochemically switchable and tunable power output. Katz E; Willner I J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592 [TBL] [Abstract][Full Text] [Related]
18. Surface display of redox enzymes in microbial fuel cells. Fishilevich S; Amir L; Fridman Y; Aharoni A; Alfonta L J Am Chem Soc; 2009 Sep; 131(34):12052-3. PubMed ID: 19663383 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum. González Arzola K; Gimeno Y; Arévalo MC; Falcón MA; Hernández Creus A Bioelectrochemistry; 2010 Aug; 79(1):17-24. PubMed ID: 19854115 [TBL] [Abstract][Full Text] [Related]
20. Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple. Hirai H; Shibata H; Kawai S; Nishida T FEMS Microbiol Lett; 2006 Dec; 265(1):56-9. PubMed ID: 17038050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]