These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18540599)

  • 1. Room-temperature chemical synthesis of shape-controlled indium nanoparticles.
    Chou NH; Ke X; Schiffer P; Schaak RE
    J Am Chem Soc; 2008 Jul; 130(26):8140-1. PubMed ID: 18540599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct synthesis and characterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent.
    Iwamoto T; Matsumoto K; Matsushita T; Inokuchi M; Toshima N
    J Colloid Interface Sci; 2009 Aug; 336(2):879-88. PubMed ID: 19476950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanowire assembling architecture for H2O2 electrochemical sensor.
    Guo S; Wen D; Dong S; Wang E
    Talanta; 2009 Feb; 77(4):1510-7. PubMed ID: 19084672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles.
    Biacchi AJ; Schaak RE
    ACS Nano; 2011 Oct; 5(10):8089-99. PubMed ID: 21936503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling anisotropic nanoparticle growth through plasmon excitation.
    Jin R; Cao YC; Hao E; Métraux GS; Schatz GC; Mirkin CA
    Nature; 2003 Oct; 425(6957):487-90. PubMed ID: 14523440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-controlled synthesis of gold and silver nanoparticles.
    Sun Y; Xia Y
    Science; 2002 Dec; 298(5601):2176-9. PubMed ID: 12481134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents.
    Lan WJ; Yu SH; Qian HS; Wan Y
    Langmuir; 2007 Mar; 23(6):3409-17. PubMed ID: 17295530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of size-controlled and shaped copper nanoparticles.
    Mott D; Galkowski J; Wang L; Luo J; Zhong CJ
    Langmuir; 2007 May; 23(10):5740-5. PubMed ID: 17407333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.
    Campelo JM; Luna D; Luque R; Marinas JM; Romero AA
    ChemSusChem; 2009; 2(1):18-45. PubMed ID: 19142903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis of fct-structured FePt nanoparticles at low temperature with assistance of poly(N-vinyl-2-pyrrolidone).
    Iwamoto T; Matsumoto K; Kitamoto Y; Toshima N
    J Colloid Interface Sci; 2007 Apr; 308(2):564-7. PubMed ID: 17289069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles.
    Shukla N; Nigra MM; Nuhfer T; Bartel MA; Gellman AJ
    Nanotechnology; 2009 Feb; 20(6):065602. PubMed ID: 19417390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route.
    Gou X; Cheng F; Shi Y; Zhang L; Peng S; Chen J; Shen P
    J Am Chem Soc; 2006 Jun; 128(22):7222-9. PubMed ID: 16734476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological synthesis of metal nanoparticles by microbes.
    Narayanan KB; Sakthivel N
    Adv Colloid Interface Sci; 2010 Apr; 156(1-2):1-13. PubMed ID: 20181326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape control in gold nanoparticle synthesis.
    Grzelczak M; Pérez-Juste J; Mulvaney P; Liz-Marzán LM
    Chem Soc Rev; 2008 Sep; 37(9):1783-91. PubMed ID: 18762828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent.
    Hoppe CE; Lazzari M; Pardiñas-Blanco I; López-Quintela MA
    Langmuir; 2006 Aug; 22(16):7027-34. PubMed ID: 16863256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates.
    Shen XS; Wang GZ; Hong X; Zhu W
    Phys Chem Chem Phys; 2009 Sep; 11(34):7450-4. PubMed ID: 19690718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-induced fate of embryonic species in the shape-controlled synthesis of rhodium nanoparticles.
    Biacchi AJ; Schaak RE
    ACS Nano; 2015 Feb; 9(2):1707-20. PubMed ID: 25630519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.